При управлении двигателями постоянного тока иногда возникает необходимость резкого изменения скорости (на пример пуск c 0% на 100% мощности или изменение скорости на протвоположную). Но такой режим работы двигателя требует очень высоких токов – в несколько раз больше, чем простое движение. Если, например, при вращении с постоянной скоростью двигатель потребляет ток порядка 500мА, то в момент пуска это значение может достигать 2-3 А. Из за этого приходится применять более мощное подсистему питания и контроллер.

Решить проблему пусковых токов можно плавным повышением скорости. Т.е. вместо мгновенного разгона двигатель будет разгоняться постепенно, при этом сглаживая пик потребления тока в момент пуска.

Подключим двигатель к motor-shield на безе L298P, как и в предыдущем примере:

Не забываем, что двигатель не имеет обатной связи, поэтому для контроля текущей скорости воспользуемя дополнительной переменной motorPower

unsigned long StartTimer; // Таймер для плавного пуска

pinMode (I1, OUTPUT);

for (motorPower=0;motorPower {

delay(StartTimeStep);

Теперь двигатель разгоняется более плавно. Разгон от 0 до 255 займет почти пол секунды, а установить интервал изменения в 1 мс – то вообще за четверть секунды. Невооруженным глазом разница не очень заметна. Но такое разгон намного более щадящий для силовой части. К тому-же скорость разгона мы можем регулировать, добиваясь нужного ускорения.

Вот только использование delay() не дает использовать параллельно

никаких других действий, поэтому реализуем плавный пуск с помощью таймеров, как при .

byte E1=5; // Управление скоростью двигателя – подключение к 5 выходу

byte I1=4; // Управление направлением вращения – подключение к 4 выходу

unsigned long StartTimer; // счетчик время для плавного пуска

int StartTimeStep=2; // Интервал изменения мощности двигателя, в мс

int StartPowerStep=1; // Один шаг изменения мощности двигателя

int motorPower; // Мощность двигателя

pinMode (E1, OUTPUT); // Задаем работу соответствующих пинов в качестве выходов

pinMode (I1, OUTPUT);

motorPower=0; // Начальная мощность - 0

digitalWrite (I1, HIGH); // На вывод I1 подан высокий логический уровень, мотор вращается в одну сторону

if (motorPower if ((millis()-StartTimer)>= StartTimeStep) // Проверяем, сколько прошло с последнего изменения скорости

// если больше, чем заданный интервал – увеличим скорость еще на один шаг

motorPower+= StartPowerStep; // увеличение скорости

analogWrite (E1, motorPower); // На выводе ENABLE управляющий сигнал с новой скоростью

StartTimer=millis(); // Начало нового шага

Теперь двигатель разгоняется плавно, причем параллельно с разгоном можно выполнять любые другие действия

Характерным для любого электродвигателя в процессе запуска является многократное превышение тока и механической нагрузки на приводимое в действие оборудование. При этом также возникают перегрузки питающей сети, создающие просадку напряжения и ухудшающие качество электроэнергии. Во многих случаях требуется устройство плавного пуска (УПП).

Необходимость плавного пуска электродвигателей

Статорная обмотка является катушкой индуктивности, состоящей из активного сопротивления и реактивного. Значение последнего зависит от частоты подаваемого напряжения. При запуске двигателя реактивное сопротивление изменяется от нуля, а пусковой ток имеет большую величину, многократно превышающую номинальный. Момент вращения также велик и может разрушить приводимое в движение оборудование. В режиме торможения также появляются броски тока, приводящие к повышению температуры статорных обмоток. При аварийной ситуации, связанной с перегревом двигателя, возможен ремонт, но параметры трансформаторной стали изменяются и номинальная мощность снижается на 30 %. Поэтому необходим плавный пуск.

Запуск электродвигателя переключением обмоток

Обмотки статора могут соединяться "звездой" и "треугольником". Когда у двигателя выведены все концы обмоток, можно снаружи коммутировать схемы "звезда" и "треугольник".

Устройство плавного пуска электродвигателя собирается из 3 контакторов, реле нагрузки и времени.

Электродвигатель запускается по схеме "звезда", когда контакты К1 и К3 замкнуты. Через интервал, заданный реле времени, К3 отключается и производится подключение схемы "треугольник" контактором К2. При этом двигатель выходит на полные обороты. Когда он разгоняется до номинальных оборотов, пусковые токи не такие большие.

Недостатком схемы является возникновение короткого замыкания при одновременном включении двух автоматов. Этого можно избежать, применив вместо них рубильник. Для организации реверса нужен еще один блок управления. Кроме того, по схеме "треугольник" электродвигатель больше нагревается и жестко работает.

Частотное регулирование скорости вращения

Вал электродвигателя вращается магнитным полем статора. Скорость зависит от частоты питающего напряжения. Электропривод будет работать эффективней, если дополнительно менять напряжение.

В состав устройства плавного пуска асинхронных двигателей может входить частотный преобразователь.

Первой ступенью устройства является выпрямитель, на который подается напряжение трехфазной или однофазной сети. Он собирается на диодах или тиристорах и предназначен для формирования пульсирующего напряжения постоянного тока.

В промежуточной цепи пульсации сглаживаются.

В инверторе выходной сигнал преобразуется в переменный заданной частоты и амплитуды. Он работает по принципу изменения амплитуды или ширины импульсов.

Все три элемента получают сигналы от электронной схемы управления.

Принцип действия УПП

Увеличение пускового тока в 6-8 раз и вращающего момента требуют применения УПП для выполнения следующих действий при запуске или торможении двигателя :

  • постепенное увеличение нагрузки;
  • снижение просадки напряжения;
  • управление запуском и торможением в определенные моменты времени;
  • снижение помех;
  • защита от скачков напряжения, при пропадании фазы и др.;
  • повышение надежности электропривода.

Устройство плавного пуска двигателя ограничивает величину напряжения, подаваемого в момент пуска. Оно регулируется путем изменения угла открытия симисторов, подключенных к обмоткам.

Пусковые токи необходимо снижать до величины, не более чем в 2-4 раза превышающей номинал. Наличие байпасного контактора предотвращает перегрев симисторов после его подключения после того, как двигатель раскрутится. Варианты включения бывают одно-, двух- и трехфазные. Каждая схема функционально отличается и имеет разную стоимость. Наиболее совершенным является трехфазное регулирование. Оно наиболее функционально.

Недостатки УПП на симисторах:

  • простые схемы применяются только с небольшими нагрузками или при холостом запуске;
  • продолжительный запуск приводит к перегреву обмоток и полупроводниковых элементов;
  • момент вращения вала снижается и двигатель может не запуститься.

Виды УПП

Наиболее распространены регуляторы без обратной связи по двум или трем фазам. Для этого предварительно устанавливается напряжение и время пуска. Недостатком является отсутствие регулирования момента по нагрузке на двигатель. Эту проблему решает устройство с обратной связью наряду с выполнением дополнительных функций снижения пускового тока, создания защиты от перекоса фаз, перегрузки и пр.

Наиболее современные УПП имеют цепи непрерывного слежения за нагрузкой. Они подходят для тяжело нагруженных приводов.

Выбор УПП

Большинство УПП - это регуляторы напряжения на симисторах, различающиеся функциями, схемами регулирования и алгоритмами изменения напряжения. В современных моделях софтстартеров применяются фазовые методы регулирования электроприводов с любыми режимами пуска. Электрические схемы могут быть с тиристорными модулями на разное количество фаз.

Одно из самых простых - это устройство плавного пуска с однофазным регулированием через один симистор, позволяющее только смягчать механические ударные нагрузки двигателей мощностью до 11 кВт.

Двухфазное регулирование также смягчает механические удары, но не ограничивает токовые нагрузки. Допустимая мощность двигателя составляет 250 кВт. Оба способа применяются из расчета приемлемых цен и особенностей конкретных механизмов.

Многофункциональное устройство плавного пуска с трехфазным регулированием имеет самые лучшие технические характеристики. Здесь обеспечивается возможность динамического торможения и оптимизации его работы. В качестве недостатков можно отметить только большие цены и габариты.

В качестве примера можно взять устройство плавного пуска Altistart. Можно подобрать модели для запуска асинхронных двигателей, мощность которых достигает 400 кВт.

Устройство выбирается по номинальной мощности и режиму работы (нормальный или тяжелый).

Выбор УПП

Основными параметрами, по которым выбираются устройства плавного пуска, являются:

  • предельная сила тока УПП и двигателя должны быть правильно подобраны и соответствовать друг другу;
  • параметр количества запусков в час задается как характеристика софтстартера и не должен превышаться при эксплуатации двигателя;
  • заданное напряжение устройства не должно быть меньше сетевого.

УПП для насосов

Устройство плавного пуска для насоса предназначено преимущественно для снижения гидравлических ударов в трубопроводах. Для работы с приводами насосов подходят УПП Advanced Control. Устройства практически полностью устраняют гидроудары при заполненных трубопроводах, позволяя увеличить ресурс оборудования.

Плавный запуск электроинструментов

Для электроинструмента характерны высокие динамические нагрузки и большие обороты. Его наглядным представителем является угловая шлифовальная машинка (УШМ). На рабочий диск действуют значительные силы инерции в начале вращения редуктора. Большие перегрузки по току возникают не только при запуске, но и при каждой подаче инструмента.

Устройство плавного пуска электроинструмента применяется только для дорогих моделей. Экономичным решением является его установка своими руками. Это может быть готовый блок, который помещается внутри корпуса инструмента. Но многие пользователи собирают простую схему самостоятельно и подключают ее в разрыв питающего кабеля.

При замыкании цепи двигателя, на регулятор фазы КР1182ПМ1 подается напряжение и начинает заряжаться конденсатор С2. За счет этого симистор VS1 включается с задержкой, которая постепенно уменьшается. Ток двигателя плавно нарастает и обороты набираются постепенно. Двигатель разгоняется примерно за 2 сек. Мощность, отдаваемая в нагрузку, достигает 2,2 кВт.

Устройство можно применять для любого электроинструмента.

Заключение

Выбирая устройство плавного пуска, необходимо анализировать требования к механизму и характеристикам электродвигателя. Характеристики производителя находятся в прилагаемой к оборудованию документации. Ошибки при выборе быть не должно, поскольку нарушится функционирование устройства. Важен учет диапазона скоростей, чтобы выбрать лучшее сочетание преобразователя и двигателя.

Осложнен возникающими при пуске большими значениями пусковых токов и моментов. Но в отличие от асинхронных двигателей, в ДПТ пусковые токи превышают номинальные в 10-40 раз. Такое громадное превышение может привести к выводу двигателя из строя, повреждению связанных с двигателем механизмов и большим просадкам напряжения в сети, что может сказаться на других потребителях. Поэтому пусковые токи стараются ограничить до значений (1,5…2) Iн.

Для маломощных двигателей (до 1 кВт) при условии отсутствия нагрузки на валу, можно применить прямой пуск, то есть непосредственно от сети. Это связано с тем что масса движущихся частей двигателя не велика, а сопротивление обмотки относительно большое. При прямом пуске таких двигателей пусковые токи не превышают значений (3…5) Iн, что для таких двигателей не критично.

Когда двигатель работает при постоянном напряжении и сопротивлении обмотки якоря, ток в якоре можно найти с помощью формулы

В этой формуле U – напряжение питающей сети, Епр – противоЭДС, ∑r – сопротивление обмоток якоря. ПротивоЭДС Епр возникает при вращении якоря в магнитном поле статора, при этом в двигателе, она направлена против якоря. Но когда якорь не движется, Епр не возникает, а значит, выражение для тока примет следующий вид

Это и есть выражение для определения пускового тока.

Глядя на формулу можно прийти к выводу, что снижения пускового тока возможно либо снижением напряжения, либо увеличением сопротивления якорной обмотки.

Пуск двигателя снижением напряжения применяется, если питание двигателя организовано от независимого источника энергии, который можно регулировать. На практике такой пуск используется для двигателей средней и большой мощности.

Мы рассмотрим более подробно способ пуска двигателя постоянного тока с помощью введения дополнительного сопротивления в цепь якоря. При этом пусковой ток будет равен

Таким образом, можно добиться величины пускового тока, в нужном диапазоне, безопасном для двигателя. Добавочное сопротивление может быть как в виде реостата, так и в виде нескольких резисторов. Это нужно для того, чтобы в процессе запуска двигателя, менять сопротивление в якорной цепи.

Следует знать, что с дополнительным сопротивлением в обмотке якоря двигатель работает не на естественной, а на более мягкой искусственной характеристике, которая не подходит для нормальной работы двигателя.

Пуск двигателя осуществляется в несколько ступеней. После некоторого разгона двигателя, Епр ограничит ток, а следовательно пусковой момент, чтобы поддержать его на прежнем уровне, нужно уменьшить сопротивление, то есть переключить реостат или шунтировать резистор.

Допустим, что ступени у нас четыре, тогда механическая характеристика будет выглядеть следующим образом

На первой ступени, когда добавочное сопротивление максимально и равно R1+R2+R3 двигатель начинает свой разгон. После достижения определенной точки, которую получают с помощью расчетных данных, сопротивление R3 шунтируют. При этом двигатель переходит на новую характеристику, и разгоняется на ней все до той же точки. Таким образом, двигатель выходит на естественную характеристику, не пострадав от действия больших пусковых токов и моментов.

Пуск двигателя постоянного тока имеет ряд отличительных особенностей.

Объясняется это большим значением пускового тока, которое необходимо предварительно ограничить.

Если этого не сделать, то может повредиться внутренняя цепь обмотки якоря.

Существует несколько способов запуска: прямой, реостатный и метод плавного повышения питающего напряжения.

По мере нарастания токовой нагрузки на обмотке статора увеличивается крутящий момент электродвигателя, который через вал передается на его подвижную часть – ротор. Чем быстрее возрастает крутящий момент, тем сильнее разогревается обмотка статора.

Это явление может привести к:

  • выходу из строя изоляции;
  • возникновению вибраций;
  • деформации механических частей двигателя;
  • полному выходу из строя мотора.

Большой ток может вызвать бурное искрение под щетками, что приведет к выходу из строя коллектора.

Избежать поломки можно, понизив пусковой ток до номинальной частоты вращения сразу после старта электромотора. Добиться этого можно несколькими способами. Выбор оптимального варианта зависит от технических характеристик мотора и его назначения.

Прямой пуск

Данный метод основан на прямом подключении якорной обмотки к электрической сети при номинальном напряжении двигателя. Прямой пуск можно применять только в случае наличия стабильного питания мотора, жестко связанного с приводом.

Этот способ является одним из самых простых. Температура при прямом пуске повышается, по сравнению с прочими способами, незначительно.

Схема прямого пуска

Метод прямого пуска наиболее предпочтителен при отсутствии специальных ограничений на ток, поступающий от электросети.

Если электродвигатель работает в режиме частых запусков и отключений, его необходимо снабдить простейшим оборудованием. Его роль может выполнять расцепитель с ручным управлением. Напряжение в этом случае подается на клеммы электромотора.

Прямой пуск можно применять только на маломощных двигателях, поскольку пик нагрузки а крупных моделях может превышать номинальную нагрузку в 50 раз.

Реостатный пуск

Метод пригоден для запуска оборудования большой мощности. Процесс осуществляется следующим образом:

  1. Из провода, разделенного на секции и имеющего высокое удельное сопротивление, изготавливается реостат.
  2. Устанавливается ток возбуждения на уровне номинального значения.
  3. Во время запуска последовательно уменьшается сопротивление реостата, исключая таким образом скачки электрического тока.

Включение в схему реостата обеспечивает безопасность запуска двигателей самой высокой мощности.

Реостатный пуск

При реостатном пуске разгон двигателя происходит постепенно с постоянным ускорением. Количество ступеней реостата зависит от требований к плавности запуска мотора и разности

Значения их сопротивлений определяется расчетом. В среднем пусковые реостаты имеют 2-7 ступеней.

Главная задача проектировщика – обеспечить одинаковое значение максимального и минимального тока на всех ступенях при их переключении в заданных временных интервалах.

Процесс переключения пускового реостата практически не поддается автоматизации. Если это необходимо (например, в автоматизированных установках), применяются пусковые сопротивления, поочередно шунтируемые контактами контакторов, работающих автоматически.

Как только двигатель войдет в рабочий режим, сопротивление реостата необходимо полностью вывести, поскольку рассчитывается оно только на кратковременную работу. Если ток будет проходить через реостат длительное время, он просто выйдет из строя.

Уменьшается сопротивление тоже ступенчато.

Пуск путем плавного повышения питающего напряжения

В обмотках двигателей насосов, конвейеров, воздуходувок в момент запуска возникают повышенные токи, превышающие их номинальное значение в 6 раз. Это явление отрицательно сказывается на составных частях мотора, снижая их долговечность. Поэтому в электрооборудовании мощностью свыше 1 кВт используют плавный пуск.

Смысл данного способа заключается в следующем: питающее напряжение повышается постепенно до тех пор, пока двигатель не выйдет на рабочий режим. Регулировка производится при помощи тиристоров или симисторов. Они располагаются «спина к спине» и устанавливаются на каждой из питающих линий .

Устройство плавного пуска

Приводятся в действие тиристоры на начальном этапе, причем их включают последовательно с небольшой задержкой для каждого полупериода. Такая схема работы способствует эффективному наращиванию напряжения (среднего переменного) на электродвигателе вплоть до его выхода на номинальное напряжение электросети.

Как только мотор достигнет номинальной скорости вращения, его можно переключить напрямую по схеме байпас.

Осуществляется посредством установок плавного пуска или частотных преобразователей.

Но эти устройства с успехом заменяют:

  • выключателями;
  • разъединителями полного напряжения.

Последний подает полное напряжение на клеммы электродвигателя (принцип прямого пуска). Но такая схема возможна только на маломощных электроустановках.

Способ плавного пуска асинхронного двигателя с короткозамкнутым ротором

Существуют и другие мягкие пускатели, обеспечивающие плавную остановку двигателя. Они необходимы в устройствах, которые при резком снижении скорости вращения могут привести к их поломке или нарушениям разного характера. В качестве примера можно привести насос, быстрая остановка которого вызовет возникновение гидроудара в системе. Нежелательна резкая остановка конвейерных лент, в результате которой полотно может выйти из строя.

Особенности плавного пуска трехфазных двигателей

На электродвигателях данного типа применяется мягкий пуск «звезда-треугольник». Схема работает следующим образом:

  • изначально обмотки мотора соединены звездой;
  • при выходе двигателя на заданные параметры они переключаются в соединение треугольником.

Система управления трёхфазным двигателем (инвертор)

В схему устройства входят:

  • контакторы на каждую фазу;
  • таймера, задающего интервал времени;
  • реле перегрузки.

Такой способ позволяет держать пусковой ток на уровне 30% от его значения при прямом пуске. Соответственно, и крутящий момент ниже – не более 25%.

Применять метод «звезда-треугольник» можно только при наличии нагрузки на двигателе в момент его пуска.

Но чрезмерно нагруженное электрооборудование разогнать до номинальной скорости не удастся из-за недостаточного крутящего момента.

Устройства плавного могут играть роль регулятора напряжения электродвигателя, если в схеме присутствует соответствующий контроллер. Его задача – отслеживать коэффициент мощности мотора. Зависит он от нагрузки: при ее небольшом значении контроллер понизит напряжение и ток электродвигателя.

Пуск при пониженном напряжении цепи якоря

Ограничить пусковой ток можно, задействовав управляемый выпрямитель или отдельный генератор .

Обмотка возбуждения питается от другого источника с полным напряжением, обеспечивающим полный пусковой ток.

Такой способ используется для запуска мощных двигателей с регулируемой скоростью вращения.

Реверсирование (изменение направления вращения) выполняется путем изменения направления тока в обмотке возбуждения или якоре.

Для пуска двигателей постоянного тока могут быть применены три способа:

1) прямой пуск, при котором обмотка якоря подключена непосредственно к сети;

2) реостатный пуск с помощью пускового реостата, включаемого в цепь якоря для ограничения тока при пуске;

3) пуск путем плавного повышения напряжения, подаваемого на обмотку якоря.

Прямой пуск. Обычно в двигателях постоянного тока падение напряжения I ном ∑r во внутреннем сопротивлении цепи якоря составляет 5–10% от U ном , поэтому при прямом пуске ток якоря I п = U ном /∑r = (10 ÷ 20) I ном, что создает опасность поломки вала машины и вызывает сильное искрение под щетками. По этой причине прямой пуск применяют в основном для двигателей малой мощности (до нескольких сотен ватт), в которых сопротивление ∑r относительно велико, и лишь в отдельных случаях–для двигателей с последовательным возбуждением мощностью в несколько киловатт. При прямом пуске таких двигателей I п = (4 ÷ 6) I ном.

Переходный процесс изменения частоты вращения n и тока якоря i a в процессе пуска определяется нагрузкой двигателя и его электромеханической постоянной времени Т м . Для установления характера изменения n и i a при пуске двигателя с параллельным возбуждением будем исходить из уравнений:

где J – момент инерции вращающихся масс электродвигателя и сочлененного с ним производственного механизма; М н –тормозной момент, создаваемый нагрузкой.

Из (2.82б) определяем ток якоря

. (2.83)

Подставляя его значение в (2.82а), получаем

(2.84а)

, (2.84б)

U где – частота вращения при идеальном холостом ходе;

уменьшение частоты вращения при переходе

от холостого хода к нагрузке; n н = n 0 – Δn н –установившаяся частота вращения при нагрузке двигателя; – электромеханическая постоянная времени, определяющая скорость протекания переходного процесса.

При этом I н = М н /(с м Ф) – установившийся ток якоря после окончания процесса пуска, определяемый нагрузочным моментом М н .

Решая уравнение (2.84б), получаем

. (2.85а)

Постоянную интегрирования А находим из начальных условий: при t = 0; n = 0 и А = – n н . В результате имеем

. (2.85б)

Рис. 2.65 – Переходный процесс изменения частоты вращения и тока якоря при прямом пуске двигателя постоянного тока

Зависимость тока якоря от времени при пуске двигателя определяется из (2.83). Подставляя в него значение

, (2.85в)

полученное из (2.846) и (2.856), и заменяя n н = n 0 – Δn, имеем

. (2.86а)

Учитывая значение Δn н , n 0 , Т м и М н /с м Ф , получим

где I нач = U /∑r – начальный пусковой ток.

На рис. 2.65 приведены зависимости изменения тока якоря и частоты вращения (в относительных единицах) при прямом пуске двигателя с параллельным возбуждением. Время переходного процесса при пуске принимается равным (3–4) Т м. За это время частота вращения n достигает (0,95 – 0,98) от установившегося значения n н , а ток якоря I а также приближается к установившемуся значению.


Реостатный пуск. Этот способ получил наибольшее распространение. В начальный момент пуска при n = 0 ток I п = U/(r + r п). Максимальное сопротивление пускового реостата r п подбирается так, чтобы для машин большой и средней мощностей ток якоря при пуске I п = (1,4 ÷ 1,8) I ном, а для машин малой мощности I п = (2 ÷ 2,5) I ном. Рассмотрим процесс реостатного пуска на примере двигателя с параллельным возбуждением. В начальный период пуск осуществляется по реостатной характеристике 6 (рис. 2.66, а ), соответствующей максимальному значению сопротивления r п пускового реостата; при этом двигатель развивает максимальный пусковой момент М п.макс.

Рис. 2.66 – Изменение частоты вращения и момента при реостатном пуске двигателей с параллельным и последовательным возбуждением

Регулировочный реостат r р. в в этом случае выводится так, чтобы ток возбуждения I в и поток Ф были максимальными. По мере разгона момент двигателя уменьшается, так как с увеличением частоты вращения растет э. д. с. Е и уменьшается ток якоря I a =(U – E)/(r +r п ). При достижении некоторого значения М п.мин часть сопротивления пускового реостата выводится, вследствие чего момент снова возрастает до М п.макс. При этом двигатель переходит на работу по реостатной характеристике 5 и разгоняется до достижения M п.мин. Таким образом, уменьшая постепенно сопротивление пускового реостата, осуществляют разгон двигателя по отдельным отрезкам реостатных характеристик 6,5,4,3 и 2 (см. жирные линии на рис. 2.66, а ) до выхода на естественную характеристику 1 . Средний вращающий момент при пуске М п.ср = 0,5 (М п.макс +М п.мин) = const, вследствие чего двигатель разгоняется с некоторым постоянным ускорением. Таким же образом пускается в ход двигатель с последовательным возбуждением (рис. 2.66, б ). Количество ступеней пускового реостата зависит от жесткости естественной характеристики и требований, предъявляемых к плавности пуска (допустимой разности M п.макс – М п.мин).

Пусковые реостаты рассчитывают на кратковременную работу под током.

На рис. 2.67 показаны зависимости тока якоря i a , электромагнитного момента М, момента нагрузки М н и частоты вращения n при реостатном пуске двигателя (упрощенные диаграммы).

Рис. 2.67 – Переходный процесс изменения частоты вращения, момента и тока якоря при реостатном пуске двигателя постоянного тока

При выводе отдельных ступеней пускового реостата ток якоря i a достигает некоторого максимального значения, а затем уменьшается согласно уравнению (2.85б) до минимального значения. При этом электромеханическая постоянная времени и начальный ток будут иметь различные для каждой ступени пускового реостата значения:

;

В соответствии с изменением тока якоря изменяется и электромагнитный момент М. Частота вращения n изменяется согласно уравнению

где n нач –начальная частота вращения при работе на соответствующей ступени пускового реостата.

Заштрихованная на рис. 2.67 область соответствует значениям динамического момента М дин = М М н,обеспечивающего разгон двигателя до установившейся частоты вращения.

Пуск путем плавного повышения питающего напряжения. При реостатном пуске возникают довольно значительные потери энергии в пусковом реостате. Этот недостаток можно устранить, если пуск двигателя осуществлять путем плавного повышения напряжения, подаваемого на его обмотку. Но для этого необходимо иметь отдельный источник постоянного тока с регулируемым напряжением (генератор или управляемый выпрямитель). Такой источник используют также для регулирования частоты вращения двигателя.