ВВЕДЕНИЕ

Проектирование вертолета представляет собой сложный, развивающийся во времени процесс, разделяющийся на взаимосвязанные проектные стадии и этапы. Создаваемый летательный аппарат должен удовлетворять техническим требованиям и соответствовать технико-экономическим характеристикам, указанным в техническом задании на проектирование. Техническое задание содержит исходное описание вертолета и его летно-технические характеристики, обеспечивающие высокую экономическую эффективность и конкурентоспособность, проектируемой машины, а именно: грузоподъемность, скорость полета, дальность, статический и динамический потолок, ресурс, долговечность и стоимость.

Техническое задание уточняется на стадии предпроектных исследований, в ходе которых выполняются патентный поиск, анализ существующих технических решений, научно-исследовательские и опытно-конструкторские работы. Основной задачей пред проектных исследований является поиск и экспериментальная проверка новых принципов функционирования проектируемого объекта и его элементов.

На стадии эскизного проектирования выбирается аэродинамическая схема, формируется облик вертолета и выполняется расчет основных параметров, обеспечивающих достижение заданных летно-технических характеристик. К таким параметрам относятся: масса вертолета, мощность двигательной установки, размеры несущего и рулевого винтов, масса топлива, масса приборного и специального оборудования. Результаты расчетов используются при разработке компоновочной схемы вертолета и составлении центровочной ведомости для определения положения центра масс.

Конструирование отдельных агрегатов и узлов вертолета с учетом выбранных технических решений выполняется на стадии разработки технического проекта. При этом параметры спроектированных агрегатов должны удовлетворять значениям, соответствующим эскизному проекту. Часть параметров может быть уточнена с целью оптимизации конструкции. При техническом проектировании выполняется аэродинамические прочностные и кинематические расчеты узлов, выбор конструкционных материалов и конструктивных схем.

На стадии рабочего проекта выполняется оформление рабочих и сборочных чертежей вертолета, спецификаций, комплектовочных ведомостей и другой технической документации в соответствии с принятыми стандартами

В данной работе представлена методика расчета параметров вертолета на стадии эскизного проектирования, которая используется для выполнения курсового проекта по дисциплине "Проектирование вертолетов".

1. Расчет взлетной массы вертолета первого приближения

где - масса полезного груза, кг;

Масса экипажа, кг.

Дальность полета

2. Расчет параметров несущего винта вертолета

2.1 Радиус R , м, несущего винта вертолёта одновинтовой схемы рассчитывается по формуле:

где - взлетная масса вертолета, кг;

g - ускорение свободного падения, равное 9.81 м/с 2;

p - удельная нагрузка на площадь, ометаемую несущим винтом,

=3,14.

Значение удельной нагрузки p на ометаемую винтом площадь выбирается по рекомендациям, представленным в работе /1/: где p = 280

Принимаем радиус несущего винта равным R = 7.9

Угловая скорость , с -1, вращения несущего винта ограничена величиной окружной скорости R концов лопастей, которая зависит от взлетной массы вертолета и составили R = 232 м/с.

С -1.

Об/мин.

2.2 Относительные плотности воздуха на статическом и динамическом потолках

2.3 Расчет экономической скорости у земли и на динамическом потолке

Определяется относительная площадь эквивалентной вредной пластинки:

Где S э = 2.5

Рассчитывается значение экономической скорости у земли V з , км/час:

где I = 1,09…1,10 - коэффициент индукции.

Км/час.

Рассчитывается значение экономической скорости на динамическом потолке V дин , км/час:

где I = 1,09…1,10 - коэффициент индукции.

Км/час.

2.4 Рассчитываются относительные значения максимальной и экономической на динамическом потолке скоростей горизонтального полета:

где V max =250 км/час и V дин =182.298 км/час - скорости полета;

R =232 м/с - окружная скорость лопастей.

2.5 Расчет допускаемых отношений коэффицента тяги к заполнению несущего винта для максимальной скорости у земли и для экономической скорости на динамическом потолке:

при

2.6 Коэффициенты тяги несущего винта у земли и на динамическом потолке:

2.7 Расчет заполнения несущего винта:

Заполнение несущего винта рассчитывается для случаев полета на максимальной и экономической скоростях:

В качестве расчетной величины заполнения несущего винта принимается наибольшее значение из Vmax и V дин :

Принимаем

Длина хорды b и относительное удлинение лопастей несущего винта будет равны:

Где zл -число лопастей несущего винта(zл =3)

2.8 Относительное увеличение тяги несущего винта для компенсации аэродинамического сопротивления фюзеляжа и горизонтального оперения:

где Sф -площадь горизонтальной проекции фюзеляжа;

S го -площадь горизонтального оперения.

S ф =10 м 2;

S го =1.5 м 2.

3. Расчет мощности двигательной установки вертолета.

3.1 Расчет мощности при висении на статическом потолке:

Удельная мощность , потребная для привода несущего винта в режиме висения на статистическом потолке, рассчитывается по формуле:

где N H ст - потребная мощность, Вт;

m 0 - взлетная масса, кг;

g - ускорение свободного падения, м/с 2;

p - удельная нагрузка на ометаемую несущим винтом площадь, Н/м 2;

ст - относительная плотность воздуха на высоте статического потолка;

0 - относительный к.п.д. несущего винта на режиме висения ( 0 =0.75);

Относительное увеличение тяги несущего винта для уравновешивания аэродинамического сопротивления фюзеляжа и горизонтального оперения :

3.2 Расчет удельной мощности в горизонтальном полете на максимальной скорости

Удельная мощность , потребная для привода несущего винта в горизонтальном полете на максимальной скорости, рассчитывается по формуле:

где - окружная скорость концов лопастей;

Относительная эквивалентная вредная пластинка;

I э - коэффициент индукции, определяемый в зависимости от скорости полета по следующим формулам:

При км/ч,

При км/ч.

3.3 Расчет удельной мощности в полете на динамическом потолке с экономической скоростью

Удельная мощность для привода несущего винта на динамическом потолке равна:

где дин - относительная плотность воздуха на динамическом потолке,

V дин - экономическая скорость вертолета на динамическом потолке,

3.4 Расчет удельной мощности в полете у земли на экономической скорости в случае отказа одного двигателя при взлете

Удельная мощность , необходимая для продолжения взлета с экономической скоростью при отказе одного двигателя рассчитывается по формуле:

где - экономическая скорость у земли,

3.5 Расчет удельных приведенных мощностей для различных случаев полета

3.5.1 Удельная приведенная мощность при висении на статическом потолке равна:

где - удельная дроссельная характеристика, которая зависит от высоты статического потолка H ст и рассчитывается по формуле:

0 - коэффициент использования мощности двигательной установки на режиме висения, значение которого зависит от взлетной массы вертолета m 0 :

При m 0 < 10 тонн

При 10 25 тонн

При m 0 > 25 тонн

3.5.2 Удельная приведенная мощность в горизонтальном полете на максимальной скорости равна:

где - коэффициент использования мощности на максимальной скорости полета,

Дроссельные характеристики двигателей, зависящие от скорости полета V max :

3.5.3 Удельная приведенная мощность в полете на динамическом потолке с экономической скоростью V дин равна:

где - коэффициент использования мощности на экономической скорости полета,

и - степени дросселирования двигателей, зависящие от высоты динамического потолка H и скорости полета V дин в соответствии со следующими дроссельными характеристиками:

3.5.4 Удельная приведенная мощность в полете у земли с экономической скоростью при отказе одного двигателя на взлете равна:

где - коэффициент использования мощности на экономической скорости полета,

Степень дросселирования двигателя на чрезвычайном режиме работы,

n =2 - количество двигателей вертолета.

3.5.5 Расчет потребной мощности двигательной установки

Для расчета потребной мощности двигательной установки выбирается максимальной значение удельной приведенной мощности:

Потребная мощность N двигательной установки вертолета будет равна:

где m 0 1 - взлетная масса вертолета,

g = 9.81 м 2/с - ускорение свободного падения.

Вт,

3.6 Выбор двигателей

Принимаем два турбовальных двигателя ВК-2500(ТВ3-117ВМА-СБ3) общей мощность каждого N =1,405 10 6 Вт

Двигатель ВК-2500(ТВ3-117ВМА-СБ3) предназначен для установки на вертолеты новых поколений, а также для замены двигателей на существующих вертолетах для повышения их летно-технических характеристик. Он создан на базе серийного сертифицированного двигателя ТВ3-117ВМА и производится на ФГУП «Завод имени В.Я. Климова».

4. Расчет массы топлива

Для расчета массы топлива, обеспечивающей заданную дальность полета, необходимо определить крейсерскую скорость V кр . Расчет крейсерской скорости выполняется методом последовательных приближений в следующей последовательности:

а) принимается значение крейсерской скорости первого приближения:

км/час;

б) рассчитывается коэффициент индукции I э :

При км/час

При км/час

в) определяется удельная мощность , потребная для привода несущего винта в полете на крейсерском режиме:

где - максимальное значение удельной приведенной мощности двигательной установки,

Коэффициент изменения мощности в зависимости от скорости полета V кр 1 , рассчитываемый по формуле:

г) Рассчитывается крейсерская скорость второго приближения:

д) Определяется относительное отклонение скоростей первого и второго приближения:

При производится уточнение крейсерской скорости первого приближения V кр 1 , она принимается равной рассчитанной скорости второго приближения . Затем расчет повторяется с пункта б) и заканчивается при условии .

Удельный расход топлива рассчитывается по формуле:

где - коэффициент изменения удельного расхода топлива в зависимости от режима работы двигателей,

Коэффициент изменения удельного расхода топлива в зависимости от скорости полета,

Удельный расход топлива на взлетном режиме.

В случае полета на крейсерском режиме принимается:

При кВт;

При кВт.

Кг/Вт час,

Масса топлива затрачиваемого на полет m т будет равна:

где - удельная мощность, потребляемая на крейсерской скорости,

Крейсерская скорость,

L - дальность полета.

5. Определение массы узлов и агрегатов вертолета.

5.1 Масса лопастей несущего винта определяется по формуле :

где R - радиус несущего винта,

- заполнение несущего винта,

Кг,

5.2 Масса втулки несущего винта рассчитывается по формуле :

где k вт - весовой коэффициент втулок современных конструкций,

k л - коэффициент влияния числа лопастей на массу втулки.

В расчете можно принять:

Кг/кН,

следовательно, в результате преобразований мы получи:

Для определения массы втулки несущего винта необходимо рассчитать действующую на лопасти центробежную силу N цб (в кН):

КН,

кг.

5.3 Масса системы бустерного управления , в которую входят автомат перекоса, гидроусилители, гидросистема управления несущим винтом рассчитывается по формуле:

где b - хорда лопасти,

k бу - весовой коэффициент системы бустерного управления, который можно принять равным 13,2 кг/м 3.

Кг.

5.4 Масса системы ручного управления :

где k ру - весовой коэффициент системы ручного управления, принимаемый для одновинтовых вертолетов равным 25 кг/м.

Кг.

5.5 Масса главного редуктора зависит от крутящего момента на валу несущего винта и рассчитывается по формуле:

где k ред - весовой коэффициент, среднее значение которого равно 0,0748 кг/(Нм) 0,8.

Максимальный крутящий момент на валу несущего винта определяется через приведенную мощность двигательной установки N и частоту вращения винта :

где 0 - коэффициент использования мощности двигательной установки, значение которого принимается в зависимости от взлетной массы вертолета m 0 :

При m 0 < 10 тонн

При 10 25 тонн

При m 0 > 25 тонн

Н м,

Масса главного редуктора:

Кг.

5.6 Для определения массы узлов привода рулевого винта рассчитывается его тяга T рв :

где M нв - крутящий момент на валу несущего винта,

L рв - расстояние между осями несущего и рулевого винтов.

Расстояние между осями несущего и рулевого винтов равно сумме их радиусов и зазора между концами их лопастей:

где - зазор, принимаемый равным 0,15…0,2 м,

Радиус рулевого винта, который в зависимости от взлетной массы вертолета составляет:

При т,

При т,

При т.

Мощность N рв , расходуемая на вращение рулевого винта, рассчитывается по формуле:

где 0 - относительный КПД рулевого винта, который можно принять равным 0,6…0,65.

Вт,

Крутящий момент M рв , передаваемый рулевым валом, равен:

Н м,

где - частота вращения рулевого вала,

с -1,

Крутящий момент, передаваемый трансмиссионным валом, Н м, при частоте вращения n в = 3000 об/мин равен:

Н м,

Масса m в трансмиссионного вала:

где k в - весовой коэффициент для трансмиссионного вала, который равен 0,0318 кг/(Нм) 0,67.

Масса m пр промежуточного редуктора равна:

где k пр - весовой коэффициент для промежуточного редуктора, равный 0,137 кг/(Нм) 0,8.

Масса хвостового редуктора, вращающего рулевой винт:

где k хр - весовой коэффициент для хвостового редуктора, значение которого равно 0,105 кг/(Нм) 0,8

кг.

5.7 Масса и основные размеры рулевого винта рассчитываются в зависимости от его тяги T рв .

Коэффициент тяги C рв рулевого винта равен:

Заполнение лопастей рулевого винта рв рассчитывается так же, как для несущего винта:

где - допускаемое значение отношения коэффициента тяги к заполнению рулевого винта.

Длина хорды b рв и относительное удлинение рв лопастей рулевого винта рассчитывается по формулам:

где z рв - число лопастей рулевого винта.

Масса лопастей рулевого винта m лр рассчитывается по эмпирической формуле:

Значение центробежной силы N цбр , действующей на лопасти рулевого винта и воспринимаемой шарнирами втулки,

Масса втулки рулевого винта m втр рассчитывается по такой же формуле, как для несущего винта:

где N цб - центробежная сила, действующая на лопасть,

k вт - весовой коэффициент для втулки, принимаемый равным 0,0527 кг/кН 1,35

k z - весовой коэффициент, зависящий от числа лопастей и рассчитываемый по формуле:

5.8 Расчет массы двигательной установки вертолета

Удельная масса двигательной установки вертолета дв рассчитывается по эмпирической формуле:

где N - мощность двигательной установки.

Масса двигательной установки будет равна:

кг.

5.9 Расчет массы фюзеляжа и оборудования вертолета

Масса фюзеляжа вертолета рассчитывается по формуле:

где S ом - площадь омываемой поверхности фюзеляжа, которая определяется по формукле:

М 2,

m 0 - взлетная масса первого приближения,

k ф - коэффициент, равный 1,7.

кг,

Масса топливной системы:

где m т - масса затрачиваемого на полет топлива,

k тс - весовой коэффициент, принимаемый для топливной системы равным 0,09.

Кг,

Масса шасси вертолета равна:

где k ш - весовой коэффициент, зависящий от конструкции шасси:

Для не убираемого шасси,

Для убираемого шасси.

кг,

Масса электрооборудования вертолета рассчитывается по формуле:

где L рв - расстояние между осями несущего и рулевого винтов,

z л - число лопастей несущего винта,

R - радиус несущего винта,

л - относительное удлинение лопастей несущего винта,

k пр и k эл - весовые коэффициенты для электропроводов и другого электрооборудования, значения которых равны:

кг,

Масса прочего оборудования вертолета:

где k пр - весовой коэффициент, значение которого равно 2.

кг.

5.10 Расчет взлетной массы вертолета второго приближения

Масса пустого вертолета равна сумме масс основных агрегатов:

Взлетная масса вертолета второго приближения m 02 будет равна сумме:

где m т - масса топлива,

m гр - масса полезного груза,

m эк - масса экипажа.

кг,

6. Описание компоновки вертолета

Проектируемый вертолет выполнен по одновинтовой схеме с рулевым винтом, двумя ГТД и двухопорными лыжами. Фюзеляж вертолета каркасной конструкции, состоит из носовой и центральной частей, хвостовой и концевой балок. В носовой части размещена двухместная кабина экипажа, состоящего их двух летчиков. Остекление кабины обеспечивает хороший обзор, правый и левый сдвижные блистеры снабжены механизмами аварийного сбрасывания. В центральной части размещена кабина размерами 6.8 х 2.05 х 1.7м, и центральной сдвижной дверью размерами 0.62 х 1.4м с механизмом аварийного сбрасывания. Грузовая кабина рассчитана на перевозку грузов массой до 2т и снабжена откидными сиденьями для 12 пассажиров, а также узлами для крепления 5 носилок. В пассажирском варианте в кабине размещены 12 кресел, установленных с шагом 0.5м и проходом 0.25м; а в задней части сделан проем под заднюю входную дверь, состоящую из двух створок.

Хвостовая балка клепаной конструкции балочно-стрингерного типа с работающей обшивкой, снабжена узлами для крепления управляемого стабилизатора и хвостовой опоры.

Стабилизатор размером 2.2м и площадью 1.5м 2 с профилем NACA 0012 однолонжеронной конструкции, с набором нервюр и дюралюминиевой и полотняной обшивкой.

Двухопорные, лыжи, передняя опора самоориентирующаяся, размерами 500 х 185мм, главные опоры форменного типа с жидкостно-газовыми двухкамерными амортизаторами размерами 865 х 280мм. Хвостовая опора состоит из двух подкосов, амортизатора и опорной пяты; колея лыж 2м, база лыжи 3.5м.

Несущий винт с шарнирным креплением лопастей, гидравлическими демпферами и маятниковыми гасителями колебаний, установлен с наклоном вперед 4° 30". Цельнометаллические лопасти состоят из прессованного лонжерона из алюминиевого сплава АВТ-1, упрочненного наклепом стальными шарнирами на вибростенде, хвостового отсека, стального наконечника и законцовки. Лопасти имеют прямоугольную форму в плане с хордой 0.67 м и профилями NACA 230 и геометрической круткой 5%, окружная скорость концов лопастей 200м/с, лопасти снабжены визуальной системой сигнализации о повреждении лонжерона и электротепловым противообледенительным устройством.

Рулевой винт диаметром 1,44м трехлопастный, толкающий, с втулкой карданного типа и цельнометаллическими лопастями прямоугольной формы в плане, с хордой 0.51м и профилем NACA 230M.

Силовая установка состоит из двух турбовальных ГТД со свободной турбиной ВК-2500(ТВ3-117ВМА-СБ3)Санкт-Петербургского НПО им. В.Я.Климова общей мощности каждого N=1405 Вт, установленных сверху фюзеляжа и закрытых общим капотом с открывающимися створками. Двигатель имеет девятиступенчатый осевой компрессор, камеру сгорания кольцевого типа и двухступенчатую турбину.Двигатели снабжены пылезащитными устройствами.

Трансмиссия состоит из главного, промежуточного и хвостового редукторов, валов тормоза, несущего винта. Главный редуктор ВР-8А трехступенчатый, обеспечивает передачу мощности от двигателей, к несущему винту, рулевому винту и вентилятору для охлаждения, маслорадиаторов двигателей и главного редуктора; общая емкость маслосистемы 60кг.

Управление дублированное, с жесткой и тросовой проводкой.и гидроусилителями, приводимыми от основной и дублирующей гидросистем. Четырехканальный автопилот АП-34Б обеспечивает стабилизацию вертолета в полете по крену, курсу, тангажу и высоте. Основная гидравлическая система обеспечивает питание всех гидроагрегатов, а дублирущая, - только гидроусилителей.

Система отопления и вентиляции обеспечивает подачу подогреваемого или холодного воздуха в кабины экипажа и пассажиров, противообледенительная система защищает от обледенения лопасти несущего и рулевого винтов, передние стекла кабины экипажа и воздухозаборники двигателей.

Оборудование для полетов по приборам в сложных метеорологических условиях днем и ночью включает два авиагоризонта, два указателя частоты вращения НВ, комбинированную курсовую систему ГМК-1А, автоматический радиокомпас, радиовысотомер РВ-3.

Связное оборудование включает командные УКВ-радиостанции Р-860 и Р-828, связные КВ-радиостан-ции Р-842 и "Карат", самолетное переговорное устройство СПУ-7.

7. Расчет центровки вертолета

Таблица 1. Центровочная ведомость пустого вертолета

Наименование агрегата

Масса агрегата, m i , кг

Координата x i центра масс агрегата, м

Статический момент агрегата М хi

Координата y i центра масс агрегата, м

Статический момент агрегата М yi

1 Несущий винт

1.1 Лопасти

1.2 Втулка

2 Система управления

2.1 Система бустерного управления

2.2 Система ручного управления

3 Трансмиссия

3.1 Главный редуктор

3.2 Промежуточный редуктор

3.3 Хвостовой редуктор

3.4 Трансмиссионный вал

4 Рулевой винт

4.1 Лопасти

4.2 Втулка

5 Двигательная установка

6 Топливная система

7 Фюзеляж

7.1 Носовая часть (15 %)

7.2 Средняя часть (50 %)

7.3 Хвостовая часть (20 %)

7.4 Крепление редуктора (4 %)

7.5 Капоты (11 %)

8.1 Главное (82 %)

8.2 Переднее (16 %)

8.3 Хвостовая опора (2 %)

9 Электрооборудование

10 Оборудование

10.1 Приборы в кабине (25%)

10.2 Радиооборудование (27 %)

10.3 Гидрооборудование (20 %)

10.4 Пневмооборудование (6 %)

Рассчитываются статические моменты М сх i и М су i относительно координатных осей:

Координаты центра масс всего вертолета рассчитываются по формулам:

Таблица 2. Центровочная ведомость с максимальной нагрузкой

Таблица 3. Центровочная ведомость с 5% остатком топлива и полной коммерческой нагрузкой

Координаты центра масс пустого вертолета: x0 =-0,003; y0 =-1,4524;

Координаты центра масс с максимальной нагрузкой : x0 =0,0293; y0 =-2,0135;

Координаты центра масс с 5% остатком топлива и полной коммерческой нагру зкой: x 0 =-0,0678; y 0 = -1,7709.

Заключение

В данном курсовом проекте проведены расчеты взлетной массы вертолета, массы его узлов и агрегатов, а также компоновка вертолета. В процессе компоновки уточнили центровку вертолета, расчету которой предшествует составление весовой сводки на основе весовых расчетов агрегатов и силовой установки, ведомостей оборудования, снаряжения, грузов и т.д. Целью проектирования является определение оптимального сочетания основных параметров вертолета и его систем, обеспечивающих выполнение заданных требований.

Общие положения.

Несущий винт вертолета (НВ) предназначен для создания подъемной силы, движущей (пропульсивной) силы и управляющих моментов.

Несущий винт состоит из втулки, лопастей, которые крепятся к втулке с помощью шарниров или упругих элементов.

Лопасти несущего винта, благодаря наличию на втулке трех шарниров (горизонтального, вертикального и осевого), совершают в полете сложное движение: - вращаются вокруг оси НВ, перемещаются вместе с вертолетом в пространстве, изменяют свое угловое положение, поворачиваясь в указанных шарнирах, поэтому аэродинамика лопасти несущего винта сложнее аэродинамики крыла самолета.

Характер обтекания НВ зависит от режимов полета.

Основные геометрические параметры несущего винта (НВ).

Основными параметрами НВ являются диаметр, ометаемая площадь, число лопастей, коэффициент заполнения, разнос горизонтального и вертикального шарниров, удельная нагрузка на ометаемую площадь.

Диаметр D – диаметр окружности по которой движутся концы лопастей при работе НВ на месте. У современных вертолетов диаметр составляет 14-35 м.

Ометаемая площадь Fом – площадь круга, который описывают концы лопастей НВ при его работе на месте.

Коэффициент заполнения σ.равен:

σ = (Z л F л) / F ом (12.1);

где Z л – количество лопастей;

F л – площадь лопасти;

F ом – ометаемая площадь НВ.

Характеризует степень заполнения лопастями ометаемой площади, изменяется в пределах s=0,04¸0,12.

При увеличении коэффициента заполнения тяга НВ растет до определенного значения, в связи с увеличением реальной площади несущих поверхностей, затем падает. Падение тяги происходит из-за влияния скоса потока и вихревого следа от идущей впереди лопасти. При увеличении s, необходимо увеличить и мощность, подводимую к НВ из-за увеличения лобового сопротивления лопастей. При увеличении s уменьшается шаг, необходимый для получения заданной тяги, что отдаляет НВ от срывных режимов. Характеристика срывных режимов и причины их возникновения будут рассмотрены далее.

Разнос горизонтального l г и вертикального l в шарниров – расстояние от оси шарнира до оси вращения НВ. Может рассматриваться в относительных величинах (12.2.)

Находится в пределах . Наличие разноса шарниров улучшает эффективность продольно-поперечного управления.

определяется как отношение веса вертолета к площади ометаемого НВ.

(12.3.)

Основные кинематические параметры НВ.

К основным кинематическим параметрам НВ относятся частота или угловая скорость вращения, угол атаки НВ, углы общего или циклического шага.

Частота вращения n с - число оборотов НВ в секунду; угловая скорость вращения НВ - определяет его окружную скорость w R .

Величина w R на современных вертолетах равна 180¸220 м/сек.

Угол атаки НВ (А) измеряется между вектором скорости набегающего потока и с
Рис. 12.1 Углы атаки несущего винта и режимы его работы.

плоскостью вращения НВ (рис.12.1). Угол А считается положительным, если воздушный поток набегает на НВ с низу. На режимах горизонтального полёта и набора высоты А -отрицательный, на снижении А- положительный.. Различают два режима работы НВ – режим осевого обтекания, когда А=±90 0 (висение, вертикальный набор или снижение) и режим косой обдувки, когда А¹±90 0 .

Угол общего шага – угол установки всех лопастей НВ в сечении на радиусе 0,7R.

Угол циклического шага НВ зависит от режима работы НВ, подробно этот вопрос рассматривается при анализе косой обдувки НВ.

Основные параметры лопасти НВ.

К основным геометрическим параметрам лопасти относятся радиус, хорда, угол установки, форма профиля сечений, геометрическая крутка и форма лопасти в плане.

Текущий радиус сечения лопасти r определяет его расстояние от оси вращения НВ. Относительный радиус определяется

(12.4);

Хорда профиля – прямая соединяющая наиболее удаленные точки профиля сечения, обозначается b (рис. 12.2).

Рис. 12.2. Параметры профиля лопасти. Угол установки лопасти j - угол между хордой сечения лопасти и плоскостью вращения НВ.

Угол установки j на `r=0,7 при нейтральном положении органов управления и отсутствии махового движения считается углом установки всей лопасти и общим шагом НВ.

Профиль сечения лопасти представляет собой форму сечения плоскостью, перпендикулярной к продольной оси лопасти, характеризуется максимальной толщиной с max , относительной толщиной вогнутостью f и кривизной . На несущих винтах применяют, как правило, двояковыпуклые, несимметричные профили с небольшой кривизной.

Геометрическая крутка производится уменьшением углов установки сечений от комля до конца лопасти и служит для улучшения аэродинамических характеристик лопасти.. Лопасти вертолетов имеют прямоугольную форму в плане, которая в аэродинамическом смысле не оптимальна, но проще с точки зрения технологии.

Кинематические параметры лопасти определяются углами азимутального положения, взмаха, качания и углом атаки.

Угол азимутального положения y определяется по направлению вращения НВ между продольной осью лопасти в данный момент времени и продольной осью нулевого положения лопасти. Линия нулевого положения в горизонтальном полете практически совпадает с продольной осью хвостовой балки вертолета.

Угол взмаха b определяет угловое перемещение лопасти в горизонтальном шарнире относительно плоскости вращения. Считается положительным при отклонении лопасти вверх.

Угол качания x характеризует угловое перемещение лопасти в вертикальном шарнире в плоскости вращения (рис.12.). Считается положительным при отклонении лопасти против направления вращения.

Угол атаки элемента лопасти a определяется углом между хордой элемента и набегающим потоком.

Лобовое сопротивление лопасти.

Лобовым сопротивлением лопасти называется аэродинамическая сила, действующая в плоскости вращения втулки и направленная против вращения НВ.

Лобовое сопротивление лопасти состоит из профильного, индуктивного и волнового сопротивлений.

Профильное сопротивление, вызывается двумя причинами: разностью давления перед лопастью и за ней (сопротивление давления) и трением частиц в пограничном слое (сопротивление трения).

Сопротивление давления зависит от формы профиля лопасти т.е. от относительной толщины () и относительной кривизны () профиля. Чем больше и тем больше сопротивление. Сопротивление давления не зависит от угла атаки на эксплуатационных режимах, но возрастает на критических a.

Сопротивление трения зависит от частоты вращения НВ и состояния поверхности лопастей. Индуктивное сопротивление – это сопротивление, вызванное наклоном истинной подъемной силы вследствие скоса потока. Индуктивное сопротивление лопасти зависит от угла атаки α и возрастает с его увеличением. Волновое сопротивление возникает на наступающей лопасти при превышении скорости полёта выше расчетной и появлении на лопасти скачков уплотнения.

Лобовое сопротивление, как и сила тяги, зависит от плотности воздуха.

Импульсная теория создания тяги несущего винта.

Физическая сущность импульсной теории заключается в следующем. Работающий идеальный винт отбрасывает воздух, предавая его частицам определенную скорость. Перед винтом образуется зона подсасывания, за винтом – зона отбрасывания и устанавливается воздушный поток через винт. Основные параметры этого воздушного потока: индуктивная скорость и прирост давления воздуха в плоскости вращения винта.

На режиме осевого обтекания воздух подходит к НВ со всех сторон, а за винтом образуется сужающая воздушная струя. На рис. 12.4. изображена достаточно большая сфера с центром на втулке НВ с тремя характерными сечениями: сечение 0, расположенное далеко перед винтом, в плоскости вращения винта сечение 1 со скоростью потока V 1 (скорость подсасывания) и сечение 2 со скоростью потока V 2 (скорость отбрасывания).

Поток воздуха отбрасывается НВ с силой Т, но и воздух давит на винт с этой же силой. Эта сила и будет силой тяги несущего винта. Сила равна произведению массы тела на
Рис. 12.3. К объяснению импульсной теории создания тяги.

ускорение, которое тело получило под действием этой силы. Следовательно, тяга НВ будет равна

(12.5.)

где m s – секундная масса воздуха, проходящая через площадь НВ равная

(12.6.)

где - плотность воздуха;

F - площадь, отметаемая винтом;

V 1 - индуктивная скорость потока (скорость подсасывания);

а – ускорение в потоке.

Формулу (12.5.) можно представить в другом виде

(12.7.)

так как по теории идеального винта скорость отбрасывания воздуха V винтом в два раза больше скорости подсасывания V 1 в плоскости вращения НВ.

(12.8.)

Практически удвоение индуктивной скорости происходит на расстоянии равном радиусу НВ. Скорость подсасывания V 1 у вертолетов Ми-8 равна 12м/с, у Ми-2 – 10м/с.

Вывод: Сила тяги несущего винта пропорциональна плотности воздуха, ометаемой площади НВ и индуктивной скорости (частоте вращения НВ).

Перепад давления в сечении 1-2 по отношению к атмосферному давлению в невозмущенной воздушной среде равен трем скоростным напорам индуктивной скорости

(12.9.)

что вызывает увеличение сопротивления элементов конструкции вертолета, находящимися за НВ.

Теория элемента лопасти.

Сущность теории элемента лопасти заключается в следующем. Рассматривается обтекание каждого малого участка элемента лопасти, и определяются элементарные аэродинамические силы dу э и dх э действующие на лопасть. Подъемная сила лопасти У л и сопротивление лопасти Х л определяются в результате сложения таких элементарных сил, действующих по всей длине лопасти от ее комлевого сечения (r к) до концевого (R):

Аэродинамические силы действующие на несущий винт определяются как сумма сил действующих на все лопасти.

Для определения тяги несущего винта пользуются формулой аналогичной формуле подъемной силы крыла.

(12.10.)

Согласно теории элемента лопасти, сила тяги развиваемая несущим винтом, пропорциональна коэффициенту тяги, ометаемой площади НВ, плотности воздуха и квадрату окружной скорости конца лопастей.

Выводы сделанные по импульсной теории и по теории элемента лопасти взаимно дополняют друг друга.

На основании этих выводов следует, что сила тяги НВ в режиме осевого обтекания зависит от плотности воздуха (температуры), установочного угла лопастей (шага НВ) и частоты вращения несущего винта.

Режимы работы НВ.

Режим работы несущего винта определяется положением НВ в потоке воздуха.(рис.12.1) В зависимости от этого определяют два основных режима работы: режим осевого и косого обтекания. Режим осевого обтекания характеризуется тем, что набегающий невозмущённый поток двигается параллельно оси втулки НВ (перпендикулярно плоскости вращения втулки НВ). В этом режиме несущий винт работает на вертикальных режимах полёта: висение, вертикальный набор высоты и снижение вертолёта. Основной особенностью этого режима является то, что положение лопасти относительно потока, набегающего на винт, не меняется, следовательно, не меняются аэродинамические силы при движении лопасти по азимуту. Режим косого обтекания характеризуется тем, что воздушный поток набегает на НВ под углом к его оси (рис12.4.). Воздух подходит к винту со скоростью V и отклоняется вниз за счет индуктивной скорости подсасывания Vi. Результирующая скорость потока через НВ будет равна векторной сумме скоростей невозмущенного потока и индуктивной скорости

V1 = V + Vi (12.11.)

В результате этого увеличивается секундный расход воздуха протекающий через НВ, а следовательно, и тяга несущего винта, которая увеличивается с ростом скорости полета. Практически рост тяги НВ наблюдается при скорости свыше 40 км/ч.

Рис. 12.4. Работа несущего винта на режиме косой обдувки.

Косая обдувка. Эффективная скорость обтекания элемента лопасти в плоскости вращения НВ и ее изменение по ометаемой поверхности НВ.

На режиме осевого обтекания каждый элемент лопасти находится в потоке, скорость которого равна окружной скорости элемента , где радиус данного элемента лопасти (Рис.12.6).

На режиме косого обтекания при угле атаки НВ не равном нулю (А=0) результирующая скорость W, с которой поток обтекает элемент лопасти, зависит от окружной скорости элемента u, скорости полета V1 и угла азимута .

W = u +V1 sinψ (12.12.)

т.е. при неизменной скорости полета и постоянной частоте вращения НВ (ωr = const.) эффективная скорость обтекания лопасти будет меняться в зависимости от угла азимута.

Рис.12.5. Изменение скорости обтекания лопасти в плоскости вращения ВВ.

Изменение эффективной скорости обтекания по ометаемой поверхности НВ.

На рис. 12.6. показаны векторы скоростей потока, который набегает на элемент лопасти в результате сложения окружной скорости и скорости полета. На схеме видно, что эффективная скорость обтекания изменяется как вдоль лопасти, так и по азимуту. Окружная скорость растёт от нуля у оси втулки винта до максимальной на концах лопастей. В азимуте 90 о скорость элементов лопасти равна , на азимуте 270 о результирующая скорость равна , у комля лопасти в зоне с диаметром d поток набегает со стороны ребра обтекания, т.е. образуется зона обратного обтекания, зона, которая не участвует в создании тяги.

Диаметр зоны обратного обтекания тем больше, чем больше радиус НВ и чем больше скорость полета при неизменной частоте вращения НВ.

На азимутах y=0 и y=180 0 результирующая скорость элементов лопасти равна .

Рис.12.6. Изменение эффективной скорости обтекания по ометаемой поверхности ВВ.

Косая обдувка. Аэродинамические силы элемента лопасти.

При нахождении элемента лопасти в потоке возникает полная аэродинамическая сила элемента лопасти , которая может быть разложена в скоростной системе координат на подъемную силу и силу лобового сопротивления .

Величина элементарной аэродинамической силы определяется по формуле:

Rr = CR(ρW²r/2)Sr (12.13.)

Просуммировав элементарные силы тяги и силы сопротивления вращению, можно определить величину силы тяги и сопротивления вращению всей лопасти.

Точка приложения аэродинамических сил лопасти является центром давления, который находится на пересечении полной аэродинамической силы с хордой лопасти.

Величина аэродинамической силы определяется углом атаки элемента лопасти , который представляет собой угол между хордой элемента лопасти и набегающим потоком (Рис.12.7).

Угол установки элемента лопасти φ есть угол между конструктивной плоскостью несущего винта (КПВ) и хордой элемента лопасти.

Угол притекания есть угол между скоростями и .(Рис.12.7.)

Рис.12.7.Аэродинамические силы элемента лопасти при косой обдувке.

Возникновение опрокидывающего момента при жестком креплении лопастей. Силы тяги создаются всеми элементами лопасти, но наибольшие элементарные силы Т л будут у элементов, расположенных на ¾ радиуса лопасти, величина равнодействующей Т л на режиме косого обтекания тяги лопасти зависит от азимута. На ψ = 90 она максимальна, на ψ = 270 минимальна. Такое распределение элементарных сил тяги и расположение равнодействующей силы приводит к образованию большого переменного изгибающего момента у корня лопасти M изг.

Этот момент создает большую нагрузку в месте крепления лопасти, что может привести к её разрушению. В результате неравенства тяг Т л1 и Т л2 возникает опрокидывающий момент вертолета,

М х =Т л1 r 1 -T л2 r 2, (12.14.)

который возрастает с увеличением скорости полета вертолета.

Винт с жестким креплением лопастей имеет следующие недостатки (Рис 12.8):

Наличие опрокидывающего момента на режиме косого обтекания;

Наличие большого изгибающего момента в месте крепления лопасти;

Изменение момента тяги лопасти по азимуту.

Эти недостатки устраняются путем крепления лопасти к втулке с помощью горизонтальных шарниров.

Рис.12.8 Возникновение опрокидывающего момента при жестком креплении лопастей.

Выравнивание момента силы тяги в различных азимутальных положениях лопасти.

При наличии горизонтального шарнира тяга лопасти образует относительно этого шарнира момент, который поворачивает лопасть (рис.12. 9). Момент тяги Т л1 (Т л2) вызывает поворот лопасти относительного этого шарнира

или (12.15.)

поэтому момент не передается на втулку, т.е. устраняется опрокидывающий момент вертолета. Изгибающий момент Muзг. у корня лопасти становится равным нулю, разгружается ее корневая часть, уменьшается изгиб лопасти, за счет этого уменьшаются усталостные напряжения. Вибрации, вызванные изменением тяги по азимуту, уменьшаются. Таким образом, горизонтальный шарнир (ГШ) выполняет следующие функции:

Устраняет опрокидывающий момент на режиме косой обдувки;

Разгружает корневую часть лопасти от M изг;

Упрощают управление несущим винтом;

Улучшают статическую устойчивость вертолета;

Уменьшают величину изменения тяги лопасти по азимуту.

Уменьшает усталостные напряжения в лопасти, и уменьшают ее вибрацию, из-за изменения силы тяги по азимуту;

Изменение углов атаки элемента лопасти за счет взмаха.

При движении лопасти в режиме косой обдувки в азимуте ψ от 0 до 90 о скорость обтекания лопасти постоянно увеличивается за счет составляющей скорости горизонтального полета (при малых углах атаки НВ ) (рис.12. 10.)

т.е. . (12.16.)

Соответственно увеличивается сила тяги лопасти, которая пропорциональная квадрату скорости набегающего потока и момент тяги этой лопасти относительно горизонтального шарнира. Лопасть взмахивает вверх,
Рис12.9 Выравнивания момента силы тяги в различных азимутальных положениях лопасти.

сечение лопасти дополнительно обдуваются сверху (рис. 12.10), а это вызывает уменьшение истинных углов атаки и уменьшение подъёмной силы лопасти, что приводит к аэродинамической компенсации взмаха. При движении от ψ 90 до ψ 180 скорость обтекания лопастей уменьшается, углы атаки увеличиваются. На азимуте ψ = 180 о и на ψ = 0 о скорости обтекания лопасти одинаковы и равны ωr.

К азимуту ψ = 270 о лопасть начинает опускаться в связи с уменьшением скорости обтекания и уменьшением Т л, при этом лопасти дополнительно обдуваются снизу, что вызывает увеличение углов атаки элемента лопасти, а значит и некоторый прирост подъёмной силы.

На ψ = 270 скорость обтекания лопасти минимальна, мах Vy лопасти вниз максимальный, углы атаки на концах лопастей близки к критическим. Вследствие различия скорости обтекания лопасти на различных азимутах, углы атаки на ψ = 270 о возрастают в несколько раз больше, чем уменьшаются при ψ = 90 о. Поэтому при увеличении скорости полета вертолета, в районе азимута ψ = 270 о углы атаки могут превышать критические значения, что вызывает срыв потока с элементов лопасти.

Косое обтекание приводит к тому, что углы взмаха лопастей в передней части диска НВ в районе азимута 180 0 значительно больше, чем в задней части диска в районе азимута 0 0 . Этот наклон диска называется завалом конуса НВ. Изменение углов взмаха лопасти по азимуту на свободном НВ, когда отсутствует регулятор взмаха, изменяются следующим образом:

азимут от 0 до 90 0:

Результирующая скорость обтекания лопасти растет, подъемная сила и ее момент увеличиваются;

Угол взмаха b и вертикальная скорость V у увеличиваются;

азимут 90 0:

Скорость взмаха вверх V у максимальная;

азимут 90 0 – 180 0:

Подъемная сила лопасти уменьшается за счет уменьшения результирующей скорости обтекания;

Скорость взмаха V у вверх уменьшается, но угол взмаха лопасти продолжает увеличиваться.

азимут 200 0 – 210 0:

Вертикальная скорость взмаха равна нулю V у = 0, угол взмаха лопасти b - максимальный, лопасть, в результате уменьшения подъёмной силы, идёт вниз;

азимут 270 0:

Скорость обтекания лопасти минимальная, подъемная сила и ее момент уменьшаются;

Скорость маха вниз V у – максимальная;

Угол взмаха b уменьшается.

азимут 20 0 – 30 0:

Скорость обтекания лопасти начинает увеличиваться;

V у = 0, угол взмаха вниз – максимальный.

Таким образом, у свободного НВ правого вращения при косой обдувке конус заваливается назад влево. С ростом скорости полёта завал конуса увеличивается.

Рис.12.10.Изменение углов атаки элемента лопасти за счет взмаха.

Регулятор взмаха (РВ). Маховое движение приводит к росту динамических нагрузок на конструкцию лопасти и неблагоприятному изменению углов атаки лопастей по диску несущего винта. Уменьшение амплитуды взмаха и изменение естественного наклона конуса НВ с левого на правое производится регулятором взмаха. Регулятором взмаха (рис.12.11.) является кинематическая связь между осевым шарниром и вращающимся кольцом автомата перекоса, обеспечивающая уменьшение углов установки лопастей j при уменьшении угла взмаха b и наоборот, увеличение угла установки лопастей при увеличении угла взмаха. Эта связь заключается в смещении точки крепления тяги от автомата перекоса к поводку осевого шарнира (точка А) (рис.12.12) с оси горизонтального шарнира. На вертолетах типа Ми регулятор взмаха заваливает конус НВ назад и вправо. В этом случае боковая составляющая по оси Z от результирующей силы НВ направлена вправо против направления тяги рулевого винта, что улучшает условия боковой балансировки вертолета.

Рис.12.11 Регулятор взмаха, Кинематическая схема. . . Равновесие лопасти относительно горизонтального шарнира.

При маховом движении лопасти (рис.12.12.) в плоскости силы тяги на нее действуют следующие силы и моменты:

Тяга Т л, приложена на ¾ длины лопасти, образует момент М т =Т·а, поворачивающий лопасть на увеличение взмаха;

Центробежная сила F цб действующая перпендикулярно конструктивного оси вращения НВ во внешнюю сторону. Сила инерции от взмаха лопасти, направленная перпендикулярно оси лопасти и противоположна ускорению взмаха;

Сила тяжести G л приложена к центру тяжести лопасти и образует момент М G =G·в поворачивающий лопасть на уменьшение взмаха.

Лопасть занимает положение в пространстве вдоль результирующей силы Rл. Условия равновесия лопасти относительно горизонтального шарнира определяется выражением

(12.17.)

Рис.12.12. Силы и моменты, действующие на лопасть в плоскости взмаха.

Лопасти НВ движутся по образующей конуса, вершина которого расположена в центре втулки, а ось перпендикулярна к плоскости концов лопастей.

Каждая лопасть занимает на определенном азимуте Ψ одинаковые угловые положения β л относительно плоскости вращения НВ.

Маховое движение лопастей является циклическим, строго повторяющимся с периодом равным времени одного оборота НВ.

Момент горизонтальных шарниров втулки НВ (М гш).

На режиме осевого обтекания НВ равнодействующая сил лопастей R н направлена вдоль оси НВ и приложена в центре втулки. На режиме косой обдувки сила R н отклоняется в сторону завала конуса. Из-за разноса горизонтальных шарниров аэродинамическая сила R н не проходит через центр втулки и между вектором силы R н и центром втулки образуется плечо. Возникает момент М гш, называемый инерционным моментом горизонтальных шарниров втулки НВ. Он зависит от разноса l r горизонтальных шарниров. Момент горизонтальных шарниров втулки НВ М гш увеличивается с увеличением расстояния l r и направлен в сторону завала конуса НВ.

Наличие разноса горизонтальных шарниров улучшает демпфирующее свойство НВ, т.е. улучшает динамическую устойчивость вертолета.

Равновесие лопасти относительно вертикального шарнира (ВШ).

Во время вращения НВ лопасть отклоняется на угол x. Угол качания x измеряется между радиальной линией и продольной осью лопасти в плоскости вращения НВ и будет положительным, если лопасть поворачивается относительно радиальной линии назад (отстает) (рис. 12.13.).

В среднем угол качания равен 5-10 о, а на режиме самовращения он отрицателен и равен 8-12 о в плоскости вращения НВ. На лопасть действуют следующие силы:

Сила лобового сопротивления Х л, приложена в центре давления;

Центробежная сила, направленная по прямой соединяющей центр массы лопасти и ось вращения НВ;

Инерционная сила F ин, направленная перпендикулярно оси лопасти и противоположно ускорению, приложена в центре масс лопасти;

Знакопеременные силы Кориолиса F к, приложенные в центре масс лопасти.

Возникновение силы Кориолиса объясняется законом сохранения энергии.

Энергия вращения зависит от радиуса,если радиус уменьшился, то часть энергии используется на увеличение угловой скорости вращения.

Поэтому, когда происходит взмах лопасти вверх, уменьшаются радиус r ц2 центра масс лопасти и окружная скорость, появляется кориолисово ускорение, стремящиеся ускорить вращение, а значит и сила - сила Кориолиса, которая поворачивает лопасть вперёд относительно вертикального шарнира. При уменьшении угла взмаха кориолисово ускорение,а значит,и сила будет направлена против вращения. Сила Кориолиса прямо пропорциональна весу лопасти, частоте вращения НВ, угловой скорости взмаха и углу взмаха

Выше перечисленные силы образуют моменты, которые на каждом азимуте похождения лопасти должны быть уравновешены

. (12.15.)

Рис.12.13.. Равновесие лопасти относительно вертикального шарнира (ВШ).

Возникновение моментов на НВ.

При работе НВ возникают следующие моменты:

Крутящий момент М к, создается силами аэродинамического сопротивления лопастей, определяется параметрами НВ;

Реактивный момент М р, приложен к главному редуктору и через раму редуктора на фюзеляже.;

Крутящий момент двигателей, передаваемый через главный редуктор на вал НВ, определяется крутящим моментом двигателей.

Крутящий момент двигателей направлен по вращению НВ, а реактивный и крутящий момент НВ – против вращения. Крутящий момент двигателя определяется расходом топлива, программой автоматического регулирования, внешними атмосферными условиями.

На установившихся режимах полета М к = М р = - М дв.

Крутящий момент НВ иногда отождествляют с реактивным моментом НВ или с крутящим моментом двигателей, но как видно из выше приведенного физическая сущность этих моментов различна.

Критические зоны обтекания НВ.

При косой обдувке на НВ, образуются следующие критические зоны (рис. 12.14.):

Зона обратного обтекания;

Зона срыва потока;

Зона волнового кризиса;

Зона обратного обтекания . В районе азимута 270 0 в горизонтальном полете образуется зона, в которой комлевые сечения лопастей обтекаются не с передней, а с задней кромки лопасти. Участок лопасти находящийся в этой зоне в создании подъемной силы лопасти не участвует. Эта зона зависит от скорости полёта, чем больше скорость полета, тем больше зона обратного обтекания.

Зона срыва потока. В полете на азимуте 270 0 – 300 0 на концах лопастей за счет маха лопасти вниз увеличиваются углы атаки сечения лопасти. Этот эффект усиливается при увеличении скорости полета вертолета, т.к. при этом возрастают скорость и амплитуда махового движения лопастей. При значительном увеличении шага НВ или увеличении скорости полета, в этой зоне происходит срыв потока (рис. 12.14.) за счёт выхода лопастей на закритические углы атаки, что приводит к уменьшению подъёмной силы и увеличению лобового сопротивления лопастей, находящихся в этой зоне. Тяга несущего винта в этом секторе падает и при большом превышении скорости полёта на НВ появляется значительный кренящий момент.

Зона волнового кризиса. Волновое сопротивление на лопасти возникает в районе азимута 90 0 на большой скорости полета, когда скорость обтекания лопасти достигает местной скорости звука, и образуются местные скачки уплотнения, что вызывает резкое увеличение коэффициента С хо за счет возникновения волнового сопротивления

С хо =С хтр +С хв. (12.18.)

Волновое сопротивление может в несколько раз превосходить сопротивление трения, а т.к. скачки уплотнения на каждой лопасти появляются циклически и на небольшой промежуток времени, то это вызывает вибрацию лопасти, которая увеличивается с ростом скорости полета. Критические зоны обтекания несущего винта уменьшают эффективную площадь несущего винта, а значит и тягу НВ, ухудшают аэродинамические и эксплутационные характеристики вертолёта в целом, поэтому ограничения полётов вертолётов по скорости связаны с рассмотренными явлениями.

.«Вихревое кольцо».

Режим вихревого кольца возникает при малой горизонтальной скорости и большой вертикальной скорости снижения вертолета при работающих двигателях вертолета.

При снижении вертолёта в таком режиме, на некотором расстоянии под НВ образуется поверхность а-а, где индуктивная скорость отбрасывания становится равной скорости снижения V y (рис.12.15). Достигая этой поверхности, индуктивный поток поворачивается навстречу НВ, частично им захватывается и снова отбрасывается вниз. При увеличении V y , поверхность а-а приближается к НВ, и при некоторой критической скорости снижения почти весь отбрасываемый воздух снова подсасывается несущим винтом, образуя вокруг винта вихревой тор. Наступает режим вихревого кольца.

Рис12.14. Критические зоны обтекания НВ.

В этом случае общая тяга НВ уменьшается, вертикальная скорость снижения V y возрастает. Поверхность раздела а-а периодически разрывается, вихри тора резко изменяют распределение аэродинамической нагрузки и характер махового движения лопастей. В результате тяга НВ становится пульсирующей, возникает тряска и броски вертолета, ухудшается эффективность управления, указатель скорости и вариометр дают неустойчивые показания.

Чем меньше установочный угол лопастей и скорость горизонтального полета, больше вертикальная скорость снижения тем интенсивнее проявляется режим вихревого кольца. снижения на скоростях полета от 40 км/час и менее.

Для предотвращения попадание вертолета в режим «вихревого кольца» необходимо выполнять требования РЛЭ по ограничению вертикальной скорости

Подсчитаем тягу несущего винта. Если рассматривать поверхность (площадь F), ометаемую винтом при его вращении, как непроницаемую плоскость, то мы увидим, что на эту плоскость сверху действует давление pi, а снизу давление р2, причем р-2 больше рх.

Из второго закона механики известно, что масса получает ускорение лишь тогда, когда на нее действует какая- либо сила. Причем эта сила равна произведению массы на ускорение и направлена в сторону ускорения (в нашем случае вниз).

Что это за сила? С одной стороны, очевидно, что эта сила есть результат воздействия винта на воздух. С другой стороны, это? силе согласно третьему закону механики должно соответствовать равное по величине и противоположное по направлению воздействие воздуха на винт. Последнее есть не что иное, как сила тяги винта.

Однако если мы посмотрим на динамометр, измеряющий фактическую тягу винта, мы установим, что наш подсчет несколько неточен. В действительности тяга будет меньше, так как мы считали работу винта идеальной и не принимали в расчет потери энергии на трение и на закручивание струи воздуха за винтом.

Фактически частички воздуха подходят к винту, имея не только индуктивную скорость в осевом направлении, перпендикулярную к плоскости вращения, но и скорость закручивания. Поэтому при подсчете индуктивных скоростей подсасывания их и отбрасывания и2 учитывается также закручивание воздуха при вращении несущего винта.

В формуле тяги коэффициенту подъемной силы су подобен коэффициент тяги; скорости полета соответствует окружная скорость концов лопастей винта, имеющего радиус г и угловую скорость, площади крыла 5 соответствует площадь диска, ометаемого винтом, лг2. Коэффициент определяется по кривой продувки данного винта на различных углах атаки.

Величину безразмерного коэффициента тяги для конкретного, уже созданного винта, работающего на данном режиме, можно подсчитать, разделив тягу Т винта, выраженную в килограммах, на произведение других параметров винта, которое также имеет размерность силы тяги кг.

Мы установили, что если подъемная сила самолета создается за счет отбрасывания вниз воздуха крылом, то подъемная сила вертолета создается путем отбрасывания вниз воздуха несущим винтом.

Когда вертолет имеет поступательную скорость, то, естественно, объем отбрасываемого вниз воздуха увеличивается.

В силу этого при затрате одной и той же мощности несущий винт вертолета, имеющего поступательную скорость, развивает большую тягу, чем винт висящего вертолета.

И, наоборот, для создания одной и той же тяги На винт вертолета, имеющего поступательную скорость, надо передавать меньшую мощность, чем на винт висящего вертолета.

Уменьшение потребной мощности с ростом скорости происходит только до определенного значения скорости, при которой увеличение сопротивления воздуха движению вертолета не только поглощает выигрыш в мощности, но даже требует последнюю увеличивать.

Введение

Проектирование вертолета представляет собой сложный, развивающийся во времени процесс, разделяющийся на взаимосвязанные проектные стадии и этапы. Создаваемый летательный аппарат должен удовлетворять техническим требованиям и соответствовать технико-экономическим характеристикам, указанным в техническом задании на проектирование. Техническое задание содержит исходное описание вертолета и его летно-технические характеристики, обеспечивающие высокую экономическую эффективность и конкурентоспособность, проектируемой машины, а именно: грузоподъемность, скорость полета, дальность, статический и динамический потолок, ресурс, долговечность и стоимость.

Техническое задание уточняется на стадии предпроектных исследований, в ходе которых выполняются патентный поиск, анализ существующих технических решений, научно-исследовательские и опытно-конструкторские работы. Основной задачей пред проектных исследований является поиск и экспериментальная проверка новых принципов функционирования проектируемого объекта и его элементов.

На стадии эскизного проектирования выбирается аэродинамическая схема, формируется облик вертолета и выполняется расчет основных параметров, обеспечивающих достижение заданных летно-технических характеристик. К таким параметрам относятся: масса вертолета, мощность двигательной установки, размеры несущего и рулевого винтов, масса топлива, масса приборного и специального оборудования. Результаты расчетов используются при разработке компоновочной схемы вертолета и составлении центровочной ведомости для определения положения центра масс.

Конструирование отдельных агрегатов и узлов вертолета с учетом выбранных технических решений выполняется на стадии разработки технического проекта. При этом параметры спроектированных агрегатов должны удовлетворять значениям, соответствующим эскизному проекту. Часть параметров может быть уточнена с целью оптимизации конструкции. При техническом проектировании выполняется аэродинамические прочностные и кинематические расчеты узлов, выбор конструкционных материалов и конструктивных схем.

На стадии рабочего проекта выполняется оформление рабочих и сборочных чертежей вертолета, спецификаций, комплектовочных ведомостей и другой технической документации в соответствии с принятыми стандартами

В данной работе представлена методика расчета параметров вертолета на стадии эскизного проектирования, которая используется для выполнения курсового проекта по дисциплине "Проектирование вертолетов".

Расчет взлетной массы вертолета первого приближения

где - масса полезного груза, кг;

Масса экипажа, кг.

Дальность полета

Расчет параметров несущего винта вертолета

2.1 Радиус R, м, несущего винта вертолёта одновинтовой схемы рассчитывается по формуле:

где - взлетная масса вертолета, кг;

g - ускорение свободного падения, равное 9.81 м/с2;

p - удельная нагрузка на площадь, ометаемую несущим винтом,

Значение удельной нагрузки p на ометаемую винтом площадь выбирается по рекомендациям, представленным в работе /1/: где p=280

Принимаем радиус несущего винта равным R=7.9

Угловая скорость, с-1, вращения несущего винта ограничена величиной окружной скорости R концов лопастей, которая зависит от взлетной массы вертолета и составили R=232 м/с.

2.2 Относительные плотности воздуха на статическом и динамическом потолках

2.3 Расчет экономической скорости у земли и на динамическом потолке

Определяется относительная площадь эквивалентной вредной пластинки:

Где Sэ=2.5

Рассчитывается значение экономической скорости у земли Vз, км/час:

Рассчитывается значение экономической скорости на динамическом потолке Vдин, км/час:

где I = 1,09…1,10 - коэффициент индукции.

2.4 Рассчитываются относительные значения максимальной и экономической на динамическом потолке скоростей горизонтального полета:

где Vmax=250 км/час и Vдин =182.298 км/час - скорости полета;

R=232 м/с - окружная скорость лопастей.

§ 1. Назначение и типы воздушных винтов
Назначение воздушного винта состоит в преобразовании крутящего момента, передаваемого от двигателя, в аэродинамическую силу. Образование аэродинамической силы объясняется третьим законом механики. Воз- душный винт при своем вращении захватывает и отбрасывает некоторую массу воздуха. Эта масса, сопротивляясь отбрасыванию, толкает винт вместе с летательным аппаратом в сторону, противоположную на- правлению отбрасывания.
Причиной создания аэродинамической силы воздушного винта является реакция отбрасываемой винтом массы воздуха.
Воздушные винты самолета служат для создания силы тяги, необходимой для поступательного движения самолета.
Несущий винт вертолета служит для создания подъемной силы, необходимой для удержания вертолета в воздухе, и силы тяги, необходимой для поступательного движения вертолета. Как было указано, одним из достоинств вертолета является его способность перемещаться в любом направлении. Направление перемещения вертолет а зависит от того, куда наклонена сила тяги несущего винта - вперед, назад или вбок (рис.1.32).
Несущий винт обеспечивает управляемость и устойчивость вертолета на всех режимах. Таким образом, несущий винт одновременно выполняет роль крыла, тянущего винта и основных органов управления.
Рулевые винты вертолета служат для уравновешивания реактивного момента и путевого управления вертолетом.

§ 2. Основные параметры, характеризующие несущий винт
К основным параметрам, характеризующим несущий винт вертолета, относятся:
Количество лопастей. На современных вертолетах применяются трех-, четырех- и пятилопастные винты. Увеличение количества лопастей ухудшает работу несущего винта из-за вредного взаимного влияния лопастей. Уменьшение количества лопастей (меньше трех) приводит к пульсирующему характеру тяги, соз- даваемой винтом, и повышенным вибрациям вертолета в полете. Диаметр несущего винта D - диаметр окружности, описываемой концами лопастей при вращении. Радиус этой окружности обозначается буквой R и называется радиусом несущего винта. Расстояние от оси вращения несущего винта до рассматриваемого сечения обозначается буквой г (рис. 1.33).

Расчеты показывают, что при одной и той же подводимой к винту мощности его тяга увеличивается с увеличением диаметра. Так, например, увеличение диаметрa вдвое увеличивает тягу в 1,59 раза, увеличение диаметра в пять раз увеличивает тягу в 2,92 раза.
Однако увеличение диаметра связано с увеличением веса винта, с большой сложностью обеспечения прочности лопастей, с усложнением технологии изготовления лопастей, увеличением длины хвостовой балки и др.
Поэтому при разработке вертолета выбирается некоторый оптимальный диаметр.

Площадь, ометаемая несущим винтом F0M, - площадь окружности, описываемой концами лопастей несущего винта при вращении.
Понятие ометаемой площади вводится потому, что эта площадь может рассматриваться как некоторая несущая поверхность, аналогичная крылу самолета ввиду вязкости и инертности воздуха, образующего при протекании через площадь, ометаемую винтом, одну общую струю. У современных вертолетов F0M= 100-:-1000 м2.
Нагрузка на ометаемую площадь р есть отношение веса вертолета G к площади, ометаемой винтом при его вращении:
FомР=G/Fом(кг/ м2) .
Увеличение р приводит к уменьшению максимальной высоты полета и к увеличению скорости снижения на режиме самовращения несущего винта.
У современных вертолетов Р=12-:-45кг/ м2 , или 118-:-440н/ м2

Коэффициент заполнения Q - величина, показывающая, какую часть ометаемой площади составляет площадь всех лопастей винта.

Форма лопастей в плане (рис. 1.34). Лопасть несущего винта может иметь прямоугольную, трапециевидную или смешанную форму в плане. Сужение трапециевидной лопасти не более 2-3.
Сужением лопасти называется отношение хорды у комля к концевой хорде.
Профиль лопасти - форма ее поперечного сечения. Для лопастей несущих винтов применяются профили, аналогичные профилям крыльев самолетов. Обычно это несимметричные профили с относительной толщиной с =
7-=-14%’. Форма профиля по длине может быть переменной (аэродинамическая крутка лопасти). При выборе, формы профиля стремятся к тому, чтобы он обладал наибольшим аэродинамическим качеством

Угол атаки сечения лопасти а - угол между хордой профиля и направлением набегающего потока воздуха в данном сечении. Величиной угла атаки определяются значения коэффициентов аэродинамических сил.

Углом установки Ф называется угол между хордой профиля и плоскостью вращения несущего винта. Угол установки вертолетных винтов замеряется на расстоянии 0,7 радиуса винта, Эта условность введена благодаря наличию геометрической крутки лопастей, вследствие которой все сечения лопастей имеют разные (уменьшающиеся к концу) углы установки. Необходимость геометрической крутки объясняется следующим. Во-первых, ввиду увеличивающейся к концу лопасти окружной скорости происходит неравномерное распределение ин- дуктивных скоростей, а следовательно, и аэродинамических сил по длине лопасти. Для обеспечения более рав- номерного распределения нагрузки угол установки к концу лопасти уменьшается. Во-вторых, в поступательном полете из-за роста угла атаки в определенном положении лопастей возникает срыв потока с концов лопастей, наличие геометрической крутки отодвигает концевой срыв в сторону больших скоростей полета. Подробнее этот вопрос будет рассмотрен ниже.
Шаг лопасти несущего винта изменяется при повороте ее в осевом шарнире, т.е. вокруг продольной оси.
Конструктивно несущий винт выполнен так, что все его лопасти в осевом шарнире могут одновременно поворачиваться на один и тот же угол или на разные углы.
Угол атаки несущего винта. Выше было сказано, что площадь, ометаемая несущим винтом, может рассматриваться как несущая поверхность, на единицу площади которой приходится определенная нагрузка.
Введем понятие - угол атаки несущего винта А, под которым будем понимать угол между плоскостью вращения несущего винта и направлением набегающего потока воздуха (направлением полета). Если поток набегает на плоскость вращения несущего винта снизу (рис. 1.36), угол атаки считается положительным, если сверху - отрицательным.
Поскольку вертолет перемещается в воздухе в любом направлении, угол атаки несущего винта может изменяться в пределах ±180°. При вертикальном снижении А = +90°, при вертикальном подъеме А = -90°.

Угол азимутального положения лопасти. При полете вертолета вращательное движение лопастей несущего винта складывается с поступательным движением всего вертолета в целом. По этой причине условия работы лопастей в большей степени зависят от их положения относительно направления полета. Для оценки особенностей работы лопастей в зависимости от их положения вводится понятие азимутального положения лопасти.
Углом азимутального положения лопасти называется угол между направлением полета и продольной осью лопасти (рис. 1.37).

Принято считать ф=0, если продольная ось лопасти совпадает с направлением набегающего потока воздуха. Следует заметить (поскольку вертолёт может совершать движение вперёд, назад или вбок), что во всех случаях отсчет угла азимутального положения должен производиться от направления лопасти, совпадающего с направлением набегающего потока воздуха. Отсчет принято вести в направлении вращения несущего винта. Очевидно, что величина угла азимутального положения лопасти за один оборот изменяется от 0 до 360° (от 0 до 2л).
Число оборотов несущего винта. В связи с тем что, несущие винты вертолетов - это винты больших диаметров, число оборотов их невелико - 100-600 об.мин.
Как показывают расчеты, чтобы иметь винт возможно большей тяги (при заданной мощности), необходимо увеличивать его диаметр и уменьшать обороты. Так, например, для того чтобы увеличить тягу в три раза, обороты надо уменьшить в пятнадцать раз (при этом диаметр винта возрастет примерно в пять раз).
Для конкретного винта тяга с увеличением оборотов возрастает, но для этого требуется увеличение подводимой мощности.
Число оборотов несущего винта ограничивается волновым кризисом, возникающим в первую очередь на концах лопастей, движущихся навстречу набегающему потоку (вблизи азимута г|) = 90°).
Во избежание больших потерь на преодоление волнового сопротивления число оборотов несущих винтов современных вертолетов выбирается таким, чтобы концы лопастей имели дозвуковые скорости обтекания. У современных вертолетов окружные скорости концов лопастей достигают 200-250 м/сек.
§ 3. Сила тяги идеального несущего винта при осевом обтекании
Идеальным винтом называется винт, при работе которого не учитываются потери на трение и закручивание струи за винтом. Режимом осевого обтекания называется такой режим, при котором воздушный поток направлен вдоль оси вращения винта. При этом угол атаки несущего винта равен 90°. На режиме осевого обтекания несущий винт работает при висении, вертикальном подъеме и вертикальном снижении вертолета.
Несущий винт подсасывает воздух со скоростью U1 и отбрасывает его со скоростью U2. Скорости U1 и U2 называются индуктивными скоростями (рис. 1.38).

Если скорость потока, обтекающего винт, равна V, то перед винтом она становится равной V + U1, а за винтом V+U2.
Масса воздуха, пройдя ометаемую площадь, получает ускорение j под действием силы F, создаваемой винтом. На основании третьего закона механики с такой же по величине, но противоположно направленной силой Т воздух действует на несущий винт. Сила Т является тягой винта. На основании второго закона механики T=mj.Массу воздуха, проходящего через ометаемую площадь, можно определить умножением объема на массовую плотность. Н. Е. Жуковским теоретически доказано и экспериментально подтверждено, что индуктивная скорость отбрасывания вдвое больше индуктивной скорости подсасывания. Иначе говоря, индуктивная скорость у диска винта равна половине общего приращения скорости, полученного воздухом, прошедшим через винт.

Индуктивная скорость подсасывания определяется опытным путем и равна 8-15 м/сек.
Из полученной формулы тяги следует, что сила тяги несущего винта зависит от массовой плотности воздуха, ометаемой площади и индуктивной скорости подсасывания.
С увеличением высоты полета или повышением температуры окружающего воздуха массовая плотность P, а следовательно, и сила тяги уменьшаются. С увеличением оборотов и шага винта индуктивная скорость U1 (тяга винта) возрастает.
Площадь, ометаемая несущим винтом Fоv, является конструктивным параметром и для конкретного винта постоянна.
Сила тяги несущего винта может быть получена и другим путем - как сумма аэродинамических сил, создаваемых отдельными лопастями, поскольку обтекание лопастей аналогично обтеканию крыла. Разница, однако, состоит в том, что лопасть совершает не поступательное, а вращательное движение, в связи с чем все ее сечения (элементы) движутся с разными скоростями. Поэтому аэродинамическая сила, создаваемая лопастью, должна вычисляться как сумма аэродинамических сил, действующих
на элемент лопасти (рис. 1.39).

Подъемная сила элемента лопасти ΔY и лобовое сопротивление элемента ΔХ соответственно отличаются по величине от силы тяги элемента ΔT и силы сопротивления вращению элемента ΔQ.
Объясняется это тем, что подъемную силу направляют перпендикулярно к набегающему на сечение потоку, лобовое сопротивление - по потоку, силу тяги - перпендикулярно к плоскости вращения элемента, а силу сопротивления вращению располагают в плоскости вращения.
§ 4. Сила тяги несущего винта при косом обтекании
Под режимом косого обтекания понимают такой режим, при котором воздушный поток направлен под некоторым произвольным углом атаки к плоскости вращения несущего винта (не равном 90°). Этот режим осуществляется при горизонтальном полете вертолета, а также при подъеме и снижении по наклонной траектории.

Для упрощения изучаемого вопроса- предварительно рассмотрим случай бокового обтекания несущего винта, т. е. такой случай, при котором поток направлен параллельно плоскости вращения несущего винта и угол атаки винта равен нулю. При этом скорость набегающего потока V складывается со скоростью подсасывания щ и дает результирующую скорость V1 (рис. 1.41). Очевидно, что V>u1.

Из формулы видно, что при одной и той же скорости отбрасывания U2 тяга винта при боковом обтекании больше, чем при осевом. Физически это объясняется увеличением секундной массы воздуха, протекающего через площадь, ометаемую винтом.
При рассмотрении более общего случая косого обтекания, когда воздух подходит к плоскости, ометаемой винтом под некоторым произвольным углом атаки несущего винта А, получим аналогичную картину. Необходимо только иметь в виду, что в каждом конкретном случае результирующая скорость воздуха, притекающего к плоскости несущего винта, должна равняться геометрической сумме скорости набегающего потока и скорости подсасывания.
§ 5. Изменение силы тяги несущего винта
при косом обтекании в зависимости от азимутального положения лопастей
При косом обтекании несущего винта скорость потока, обтекающего лопасти, складывается из скорости вращательного движения и поступательной скорости набегающего потока воздуха. Для простоты рассуждения рассмотрим обтекание концевого сечения лопасти. Заметим, что составляющая скорости набегающего потока, направленная вдоль лопасти, в создании подъемной силы не участвует. Окружная скорость концевого сечения равна wR. Пусть скорость набегающего потока равна V. Разложим эту скорость на на правление вдоль лопасти и перпендикулярно к ней (рис. 1.42).

В азимуте 90° она становится равной + V и в азимуте 270° равной -V. Таким образом, за один оборот лопасти скорость ее обтекания достигает максимума в азимуте 90° и минимума в азимуте 270°.
Из формулы видим, что сила тяги лопасти - величина переменная и зависит от азимута. Максимальное значение она приобретает в азимуте 90°, когда величина окружной скорости складывается со скоростью полета, минимальное значение - в азимуте 270°, когда скорость полета вычитается из окружной скорости.
величина силы тяги двухлопастного винта зависит от азимута и является величиной переменной. Переменная составляющая силы тяги двухлопастного винта вызывает повышенную вибрацию вертолета, в связи с чем применение двухлопастных несущих винтов ограничено. Для вычисления силы тяги трехлопастного винта необходимо сложить тяги трех лопастей, отстоящих по азимуту на 120° друг от друга. Элементарные математические вычисления показывают, что для винтов, имеющих три и более лопастей, переменная составляющая исчезает и общая тяга становится величиной постоянной, не зависящей от азимута.
Очень важно отметить, что общая сила тяги несущего винта с жестко закрепленными на втулке лопастями при косой обдувке не совпадает с осью вращения, а смещена в сторону лопастей, движущихся навстречу потоку воздуха. Это объясняется тем, что подъемная сила лопастей, движущихся навстречу потоку, больше, чем у лопастей, движущихся по направлению потока, и в результате геометрического сложения равнодействующая подъемных сил оказывается смещенной в сторону лопастей, движущихся навстречу потоку. Смещенная сила тяги несущего винта создает относительно центра тяжести вертолета опрокидывающий (кренящий) момент (рис. 1.43). Несущий винт с жестко закрепленными лопастями неминуемо опрокинул бы вертолет при попытке создать сколько-нибудь существенную поступательную скорость.
Помимо кренящего момента, стремящегося опрокинуть вертолет относительно продольной оси, при косой обдувке несущего винта возникает еще и продольный момент, поворачивающий плоскость вращения несущего винта относительно поперечной оси на увеличение угла атаки. Возникновение этого момента объясняется тем, что условия обтекания лопастей вблизи азимута 180° лучше, чем в азимуте 360°. Вследствие этого точка приложения силы тяги винта смещается вперед от оси вращения, что и приводит к образованию кобрирующего момента. Величина продольного момента упругой лопасти дополнительно увеличивается благодаря изгибу лопастей вверх под действием подъемных сил по причине того, что на лопасть, находящуюся в районе азимута 180°, встречный поток действует снизу, тогда как на Рис. 1.43.

Возникновение опрокидывающего момента у винта с жестко закрепленными лопастями
лопасть, находящуюся в районе азимута 0°, - сверху (рис. 1.44). Устранение вредного влияния опрокидывающего и продольного моментов осуществляется шарнирной подвеской

лопастей.
§ 6. Сопротивление несущего винта при косом обтекании
Плоскость, ометаемая несущим винтом, рассматривается как несущая поверхность. Эта поверхность создает подъемную силу и лобовое сопротивление за счет набегающего потока воздуха. Сопротивление несущего винта по аналогии с крылом состоит из профильного и индуктивного.
При осевом обтекании профильные сопротивления лопастей во всех азимутах одинаковы и равнодействующая их равна нулю.

Физический смысл появления профильного сопротивления при косом
обтекании можно представить следующим образом.
За один оборот сопротивление лопасти периодически изменяется,
достигая своего максимума в азимуте 90° и минимума в азимуте 270°. Разность сопротивлений «наступающей» и«отступающей» лопастей дает силу, направленную в сторону, противоположную движению верто- лета. Эта сила и есть профильное сопротивление несущего винта Х пр (рис. 1.45). Индуктивное сопротивление несущего винта можно объяснить теми же
причинами, что и при обтекании крыла, т. е. образованием вихрей, на которые расходуется энергия потока. Лобовое сопротивление несущего винта складывается из профильного и индуктивного Х нв = Х пр + Х ин
Величина лобового сопротивления несущего винта зависит от формы профиля лопастей, угла их установки, числа оборотов, скорос ти полета и угла атаки нес ущего винта.
Лобовое сопротивление несущего винта необходимо учитыват ь пр и полете н а режи ме са мовр ащения.

§ 7. Зона обратного обтекания
При движении лопасти в азимутах Ф = 180-:-360° сечения лопасти, расположенные вблизи комля, обтекаются не с ребра атаки, а с ребра обтекания. Действительно, в азимуте

270° такое обтекание будет у всех сечений лопасти, расположенных от оси вращения до точки на лопасти, в которой v = wr, т. е. до той точки, где окружная скорость равна скорости полета (рис. 1.46). Из-за противоположного направления этих скоростей суммарная скорость
обтекания в этой точке равна нулю (Wr = 0).
Задаваясь различными значениями ф, легко получить из последнего
выражения зону обратного обтекания. Нетрудно убедиться в том, что эта зона представляет окружность диаметром d= V/w, расположенную на диске, ометаемом несущим винтом (рис. 1.46).
Наличие зоны обратного обтекания - явление отрицательное. Часть лопасти, проходящая через эту зону, создает силу, направленную вниз, что уменьшает тягу несущего винта и приводит к увеличению

вибраций лопастей и всего вертолета. С увеличением скорости полета зона обратного обтекания увеличивается.
Величину зоны обратного обтекания можно оценить коэффициентом характеристики режима работы несущего винта м. Под
коэффициентом характеристики режима работы несущего винта понимают отношение скорости поступательного движения к окружной
скорости концевого сечения лопасти.
Коэффициент показывает, какая часть лопасти, находящейся в
азимуте 270°, расположена в зоне обратного обтекания. Так, например,
если м=0,25, то d = 0,25 R. Это означает, что четвертая часть лопасти работает в условиях обратного
обтекания, а диаметр зоны обратного обтекания составляет 25% радиуса несущего винта.
§ 8 Потери энергии несущим винтом. Относительный КПД винта
При выводе формулы тяги идеального винта (§ 3 настоящей главы) мы пренебрегали всеми видами потерь. При работе реального винта на рабочих режимах около 30% потребной для его вращения мощности затрачивается на преодоление профильного сопротивления лопастей. Величина профильных потерь зависит от формы профиля и состояния поверхности.
Анализируя работу идеального винта, мы предполагали, что индуктивная скорость во всех точках ометаемой площади одинакова. Но это не так. Вблизи лопасти индуктивная скорость больше, чем в промежутках между лопастями. Кроме того, индуктивная скорость изменяется вдоль лопасти, возрастая с увеличением радиуса сечения, из-за увеличения окружной скорости сечения (рис. 1.47). Таким образом, поле индуктивных скоростей, создаваемое несущим винтом, неоднородно.

Соседние струйки воздуха движутся с разными скоростями, ввиду чего из-за влияния вязкости воздуха возникают потери на неравномерность потока или индуктивные потери, составляющие около 6% потребной мощности. Одним из способов уменьшения этих потерь является геометрическая крутка лопастей.
Несущий винт не только отбрасывает массу воздуха, создавая тем самым тягу, но и закручивает струю. Потери на закрутку струи составляют около 0,2% подводимой к винту мощности.
Из-за разности давлений под и над плоскостью вращения винта воздух перетекает снизу вверх по окруж- ности диска несущего винта. По этой причине некоторое узкое кольцо, расположенное по окружности плоскости, ометаемой несущим винтом, в создании тяги не участвует (рис. 1.48). Комлевые части лопастей, где распо- ложены узлы крепления, также не участвуют в создании силы тяги. В общей сложности концевые и ком- левые потери составляют около 3% потребной мощности.
Благодаря наличию перечисленных потерь мощность, потребная для вращения реального винта, создающего тягу, равную тяге идеального винта, получается больше.
Насколько удачен тот или иной реальный винт с точки зрения обеспечения минимума потерь, можно судить

по относительному КПД несущего винта г| 0 , который представляет собой отношение мощности, потребной для отбрасывания воздуха и получения данной тяги, к мощности, фактически затраченной на вращение ре- ального винта, создающего такую же тягу.

§ 9. Шарнирная подвеска лопастей несущего винта
В § 2 настоящей главы было указано на наличие у несущих винтов осевых шарниров, которые служат для изменения шага винта в полете. Изменение шага дости- гается поворотом лопастей вокруг осевых шарниров в пределах? = 0- 15°.Кроме осевых шарниров, винты имеют горизонтальный и вертикальный шарниры.
Горизонтальный ш а р н и р (ГШ)позв ол яе т лопасти отклоняться в вертикальной плоскости. Благодаря
этому шарниру лопасть имеет возможность при движении навстречу потоку взмахивать вверх, а при движении по направлению потока - вниз. Таким образом, горизонтальный шарнир позволяет лопастям совершать маховые движения.
Угол, заключенный между осью лопасти и плоскостью втулки винта, называется углом взмаха?. Кон-
структивно отклонение лопасти относительно горизонтального шарнира ограничивается упорами (вверх на
25-30°, вниз на 4-8°). Несмотря на наличие маховых движений в полете, лопасть не касается упоров, по- скольку диапазон углов взмаха меньше, чем угол между упорами. Касание лопасти упоров происходит лишь при сильном падении оборотов, а соответственно и при недопустимом уменьшении центробежной силы лопасти.
При стоянке вертолета, когда несущий винт не вращается или вращается с малыми оборотами, концы ло- пастей за счет своего веса прогибаются вниз, а если лопасть будет упираться в нижний упор, то возможен удар по хвостовой балке или фюзеляжу. Поэтому, помимо нижнего упора, имеется еще специальный ограничитель свеса, который при малых оборотах не дает возможности лопасти чрезмерно опуститься вниз и ударить по вертолету.
При повышении оборотов, когда аэродинамические силы прогибают концы лопастей вверх, ограничитель свеса выключается, после чего лопасть может совершать маховые движения вплоть до нижнего упора.
В е р т и к а л ь н ы й ш а р н и р (ВШ) обеспечивает отклонение лопасти относительно втулки в плоскости
вращения винта. Ниже будет показано, что при вращении несущего винта лопасть может уходить от нейтраль- ного (радиального) положения назад или вперед на некоторый угол. Этот угол называется углом отставания (опережения) и обозначается буквой?. Величина этого угла ограничивается упорами. Лопасть может повора- чиваться назад на? = 10-:-18° и вперед на? = 6-:-8°*.
Наличие горизонтального и вертикального шарниров вносит существенное изменение в работу несущего
винта.

* В технических описаниях величина угла отставания (опережения) дается не относительно радиального положения лопасти, а относительно перпендикуляра к горизонтальному шарниру.
25
Во-первых, необходимо отметить образование так называемого конуса (тюльпана) вследствие того, что под действием подъемных сил лопасти отклоняются относительно горизонтальных шарниров и поднимаются над плоскостью вращения втулки. Во-вторых, за счет маховых движений выравниваются подъемные силы лопастей в разных азимутах, что дает возможность устранить опрокидывание и кабрирование вертолета при поступательном полете. Наконец, комлевые сечения лопастей разгружаются от больших изгибающих моментов, которые имеют место при жесткой заделке лопастей.
§ 10. Горизонтальный шарнир (ГШ)
Рассмотрим равновесие лопасти относительно горизонтального шарнира, т. е. силы, действующие на ло-
пасть в плоскости, перпендикулярной к плоскости вращения (рис. 1.49).

В этой плоскости на лопасть действуют следующие силы: (Gл - вес; Yл - подъемная сила; Fц. б -
центробежная сила.
Подъемная сила в 10-15 раз больше веса лопасти. Самой больш ой я вл я е тся цен тр о бежная сила, превышающая вес лопасти в 100-150 раз. В равновесном положении сумма моментов всех сил, действующих на лопасть относительно ГШ, должна быть равна нулю. Иначе говоря, равнодействующая этих сил должна про- ходить через ось ГШ.
При вращении лопасть описывает поверхность, близкую к конусу, и поэтому угол взмаха называют углом конусности.

При осевом обтекании, постоянном шаге и оборотах значение угла
конусности вполне определенное. Если, например, увеличить

шаг лопасти, то под действием возросшего момента от подъемной силы лопасть начнет отклоняться в сторону увеличения угла взмаха..
С увеличением угла взмаха одновременно увеличивается момент
центробежной силы, препятствующей отклонению лопасти, и когда вновь установится равновесие, лопасть будет вращаться с большим значением угла взмаха.
При косом обтекании в азимутах 0-180° лопасть движется навстречу потоку, а в азимутах 180-360° - по направлению потока. Лопасть, движущаяся навстречу потоку, получает прирост подъемной силы и взмахивает вверх, поскольку момент подъемной силы оказывается больше момента центробежной силы (моментом силы веса из-за малых величин пренебрегают).
У лопасти, движущейся по направлению потока, подъемная сила уменьшается, и под действием момента
центробежной силы она взмахивает вниз. Таким образом, за один оборот лопасть совершает взмах вверх и
взмах вниз.
Скорость обтекания наибольшая в азимуте 90°, поэтому и прирост подъемной силы здесь наибольший.
Наименьшая подъемная сила будет в азимуте 270°, где скорость обтекания минимальна и сильнее всего ска- зывается влияние зоны обратного обтекания. Однако благодаря наличию ГШ и маховых движений лопастей увеличение и уменьшение подъемных сил в указанных азимутах получаются сравнительно небольшими. Объясняется это изменением углов атаки у машущих лопастей. Действительно, при взмахе лопасти вверх угол атаки уменьшается, а при взмахе вниз - увеличивается (рис. 1.50). По этой причине величина подъемных сил по азимутам выравнивается, чем практически устраняется кренящий и продольный моменты, действующие на вертолет.

В итоге необходимо сказать, что назначение горизонтальных шарниров сводится к выравниванию подъемных сил лопастей во всех азимутах и к разгрузке комлевых сечений от изгибающих моментов. Го ри з он тальные шарниры конструктивно разнесены от оси вращения винта на не которое расстояние Lгш (рис. 1.51). При осевом обтекании ось конуса вращения и ось втулки совпадают. Поэтому центробежные силы лопастей Fцб, условно приложенные к ГШ, взаимно уравновешиваются. При косом обтекании ось конуса и ось втулки не совпадают и центробежные силы лежат в разных (параллельных) плоскостях. Эти силы на некотором плече с создают момент М г. ш = FцбС, который улучшает управляемость вертолета. Кроме того, указанный момент при случайном отклонении вертолета относительно продольной или поперечной оси оказывает демпфирующее действие, т. е. направлен в сторону, противоположную отклонению, что улучшает устойчивость вертолета.

§ 11. Завал конуса вращения при косой обдувке
В предыдущем параграфе было указано, что благодаря наличию горизонтальных шарниров лопасти в ази- мутах 0-180° взмахивают вверх, а в азимутах 180- 360° - вниз. В действительности картина маховых движений лопастей выглядит несколько сложнее. Ввиду тог о что лопасти обладают массой, увеличение угла

взмаха по инерции продолжается не до азимута 180°, а несколько дальше, уменьшение - не до 360°, а также не ско льк о д а льш е. Пом и мо это г о, вб л изи а зи м ут а 180° воздушный поток притекает к лопасти снизу, а вблизи азимута 360°-сверху, что также дополнительно способствует продолжению увеличения угла взмаха вблизи азимута 180° и уменьшению угла взмаха вблизи азимута 360°.
На рисунке 1.52, а приведена экспериментальная кривая зависим ости у гла взмаха от азиму т а, полученн ая на установке В-1. Для испытуемой модели несущего винта с жесткими лопастями при скорости косой обдувки 20 м/сек максимальный угол взмаха оказался в азимуте 196°, а минимальный -в азимуте 22°. Это означает, что ось конуса вращения отклонена назад и влево. Явление отклонения оси конуса вращения несущего винта при косом обтекании называется завалом конуса вращения (рис. 1.53).

Теоретически конус несущего винта при косой обдувке заваливается назад и влево. Этот завал подтвержден и приведенным выше экспериментом. Однако на направление бокового завала существенное влияние оказывает деформация лопастей и разнос горизонтальных шарниров. Реальная лопасть несущего винта не обладает достаточной жесткостью и под влиянием действующих на нее сил
27

сильно деформируется - изгибается и закручивается. Закрутка происходит в сторону уменьшения углов атаки, в связи с чем взмах вверх прекращается раньше (Ф= 160°). Соответственно раньше прекращается и взмах вниз (ф=340°).
На рисунке 1.52, б приведена экспериментальная кривая зависим ости угла взмах а от азим у та, полученн ая на установке В-2. При испытании модели винта с гибкими лопастями максимальный угол взмаха получен в азимуте ф=170°, а минимальный - в азимуте ф = 334°. Таким образом, у реальных вертолетов конус вра щения заваливается назад и вправо. Величина угла завала зависит от скорости полета, шага винта и оборотов. С увеличением шага винта и скорости и с уменьшением об оротов за вал ко нуса вр ащени я увеличи вается.
Управление современными вертолетами осуществляется наклоном конуса вращения в сторону перемещения вертолета. Например, для перемещения вперед летчик отклоняет ось конуса вращения несущего винта вперед (с помощью автомата перекоса). Наклон конуса сопровождается наклоном тяги несущего винта в соот- ветствующую сторону, что и дает необходимую составляющую для перемещения вертолета (рис. 1.32). Однако как только скорость полета начинает возрастать, вследствие косого обтекания конус заваливается назад и вбок. Влияние завала конуса парируется дополнительным движением ручки управления вертолетом.
§ 12. Вертикальный шарнир (ВШ)
Для того чтобы убедиться в необходимости установки, кроме горизонтального, еще и вертикального шар-
нира, рассмотрим силы, действующие на лопасть в плоскости вращения.
При вращении винта на его лопасти в плоскости вращения действуют силы сопротивления вращению Q л. На режиме висения эти силы будут одинаковы во всех азимутах. При косом обтекании винта сопротивление лопасти, движущейся навстречу потоку, больше, чем у лопасти, движущейся по направлению потока. Наличие горизонтальных шарниров и маховых движений лопастей способствует уменьшению этой разницы (благодаря выравниванию углов атаки), однако не устраняет ее полностью. Поэтому сила сопротивления вращению является переменной силой, нагружающей корневые части лопастей.
При изменении оборотов на лопасти несущего винта действуют инерционные силы, при увеличении оборо- тов- направленные против вращения, а при уменьшении оборотов - в сторону вращения винта. Инерционные силы могут возникать и при постоянных оборотах втулки несущего винта из-за неравно мерности потока воздуха, притекающего к диску несущего винта, что приводит к изменению аэро- динамических сил и дополнительному стремлению лопастей к перемещению относительно втулки. В полёте инерционные силы сравнительно невелики. Однако на земле в момент начала раскрутки несущего
винта инерционные силы достигают большой величины и при резком включении трансмиссии могут привести даже к поломке лопастей.
Кроме того, наличие горизонтальных шарниров, обеспечивающих маховые движения лопастей, приводит к тому, что центр тяжести лопасти периодически приближается и удаляется от оси вращения винта (рис. 1.54).

Исходя из закона сохранения энергии, кинетическая энергия вращающегося несущего
винта должна оставаться постоянной независимо от махового движения лопасти (изменениями остальных видов энергии пренебрегают). Кинетическая энергия вращающегося винта определяется по формуле:

где т- масса вращающихся лопастей;
w -
угловая скорость вращения лопасти,
г-расстояние от оси вращения до центра тяжести лопасти;

Из формулы видно, что при постоянной кинетической энергии приближение центра тяжести лопасти к оси вращения (взмах вверх) должно сопровождаться увеличением угловой скорости вращения, а удаление центра тяжести лопасти от оси вращения (взмах вниз) должно сопровождаться уменьшением угловой скорости вращения. Это явление хорошо известно танцорам, увеличивающим скорость вращения своего тела путем резкого приближения рук к туловищу (рис. 1.55). Силы, под действием которых происходит увеличение или уменьшение угловой скорости вращения при изменении момента инерции вращающейся системы, называют кориолисовыми.

При взмахе лопастей вверх кориолисовы силы направлены в сторону вращения несущего винта, при взмахе вниз - против.
Кориолисовы силы, возникающие при маховых движениях, достигают значительной величины и нагружают корневые части лопастей переменными
изгибающими моментами, действующими в плоскости вращения несущего винта.
Таким образом, постановка горизонтальных шарниров, позволившая
устранить передачу изгибающих моментов на втулку винта и разгрузить комлевые части лопастей в плоскости взмаха, в то же время вызвала и нежелательные явления, связанные с возникновением кориолисовых сил, нагружающих корневые части лопастей переменным моментом в плоскости вращения. Переменный момент от кориолисовых сил передается на подшипники ГШ, втулку несущего винта и вал двигателя, вызывая знакопеременные нагрузки, что приводит к ускоренному износу подшипников ГШ и вибрациям
вертолета.
Для разгрузки корневых частей лопастей от знакопеременных изгибающих моментов, действующих в плоскости вращения, а втулки - от знакопеременных нагрузок, вызывающих вибрации вертолета, устанавливаются вертикальные шарниры, которые в плоскости вращения, винта обеспечивают колебательные движения лопастей.
Кроме рассмотренных сил, на лопасть в плоскости вращения действует также центробежная сила.
При наличии вертикального шарнира и равномерном поле скоростей набегающего потока воздуха на режиме
висения лопасть отстает от радиального положения на определенный угол?. На рисунке 1.56 показана величина угла отставания?, обусловливаемая равенством моментов:

Fц.бLц.б =Qл LQ.
При переходе к полету с поступательной скоростью к аэродинамическим силам добавляются переменные инерционные и кориолисовы силы, а сами аэродинамические силы тоже становятся переменными. Под действием этих сил лопасть совершает сложное движение, состоящее из вращательного движения, поступательного (вместе с вертолетом), махового относительно ГШ и колебательного относительно ВШ.
При наличии ВЩ лопасть поворачивается на

Некоторый угол отставания? (рис.1.57,а). При этом лопасть располагается так, что равнодействующая аэродинамических и центробежных сил N направлена по ее оси. Перенося равнодействующую на ось ГШ и раскла- дывая ее на силы А и В, убеждаемся, что подшипники ГШ нагружены не одинаково. Действительно, при наличии одной силы А как
передний, так и задний подшипники ГШ были бы нагружены одинаковыми радиальными нагрузками. Однако сила
В, разгружая задний подшипник, дополнительно нагружает передний, вызывая неравномерный износ подшипников. Помимо этого, сила В, являющаяся для ГШ осевой, требует установки упорных подшипников.
Для приближения условий работы подшипников ГШ к условиям симметричной нагрузки применяется смещение
ГШ относительно втулки вперед по вращению (рис. 1.57, б). В этом случае наличие угла отставания?
приводит к тому, что ось лопасти располагается примерно перпендикулярно к оси ГШ.

Так как верт икальн ые шарниры позво ляют лопастям совершать колебательные движения в плоскости вращения несущего винта, то для предотвращения возможности роста амплитуды этих колебаний на несущих

винтах современных вертолетов устанавливаются специальные демпферы - гасители колебаний. Демпферы бывают фрикционные и гидравлические. Принцип действия как тех, так и других состоит в превращении энергии колебаний в тепловую энергию, которая затем рассеивается в окружающее пространство.
На земле перед запуском двигателя и раскруткой несущего винта его лопасти должны быть поставлены на передние упоры ВШ. Делается это для уменьшения углового ускорения (силы инерции) лопастей в начальный момент раскрутки.
Неодинаковый поворот лопастей относительно ВШ вызывает смещение центра тяжести несущего винта от оси вращения. В результате при вращении винта возникает инерционная сила, вызывающая вибрацию (раскачку) вертолета.
Это явление представляет особую опасность при работе несущего винта на земле, поскольку частота собст- венных колебаний вертолета на упругом шасси может оказаться равной или кратной частоте вынуждающей силы, что приводит к колебаниям, которые принято называть земным резонансом.
§ 13. Компенсация взмаха
Как известно, основной причиной завала конуса вращения винта являются маховые движения лопастей при косом обтекании. Чем больше максимальный угол взмаха вверх, тем больше завал конуса вращения. Наличие большого завала конуса нежелательно, так как требует дополнительного отклонения командных рычагов для компенсации завала при управлении вертолетом в поступательном полете. Поэтому необходимо, чтобы равновесие моментов относительно ГШ устанавливалось при меньшей величине амплитуды маховых движений.
Для того чтобы амплитуда маховых движений была в пределах допуска, применяют компенсацию взмаха. Принцип компенсации взмаха заключается в том, что узел крепления поводка управления (А) устанавливается не на оси горизонтального шарнира, а сдвигается в сторону лопасти (рис. 1.58).

Если точка А не лежит на оси горизонтального шарнира и неподвижна, то при взмахе вверх угол установки, а значит, и угол атаки лопасти уменьшаются, а при взмахе вниз - увеличиваются. Вследствие изменения углов атаки при взмахах лопасти возникают аэродинамические силы, препятствующие возрастанию амплитуды маховых движений.
Эффективность компенсации в большой степени зависит от tg ?1 (рис. 1.58), называемого характеристикой компенсации взмаха. Чем больше tg ?1, тем на больший угол изменяется угол установки лопасти при взмахе. Следовательно, при увеличении tg ?1 эффективность компенсации взмаха возрастает.
Наличие угла отставания? при установке вертикального шарнира может увеличивать амплитуду маховых
движений (рис. 1.59). При отклонении лопасти вокруг ВШ на угол? передняя кромка (точка А) будет отстоять от ГШ дальше, чем задняя кромка (точка В). Поэтому при взмахе путь точки А больше пути, пройденного точкой В, в результате чего при взмахе вверх угол атаки лопасти возрастает, при взмахе вниз угол атаки лопасти уменьшается.

Таким образом, угол отставания будет способствовать возникновению на лопасти дополнительных аэро- динамических сил, стремящихся увеличить амплитуду маховых движений. Поэтому особенно целесообразно применение компенсации взмаха лопастей, имеющих вертикальный шарнир.

§ 14. Реактивный момент несущего винта
При вращении несущего винта на его лопасти действуют силы сопротивления воздуха, которые относи- тельно оси винта создают момент сопротивления вращению. Для преодоления этого момента к валу несущего винта на вертолетах с механическим приводом от двигателя, установленного в фюзеляже, подводится крутящий момент. Крутящий момент передается через главный редуктор на вал несущего винта. В соответствии с третьим законом механики (законом равенства действия противодействию) возникает реактивный момент, который через узлы крепления главного редуктора передается на фюзеляж вертолета и стремится вращать его в направлении, противоположном крутящему моменту. Крутящий момент и реактивный момент независимо от режима работы винта всегда равны между собой по величине и противоположны по направлению Мкр = Мр.
Если двигатели установлены на самих лопастях, очевидно, что реактивный момент отсутствует. Реактивный
момент отсутствует также и на режиме самовращения несущего винта, т. е. во всех случаях, когда крутящий
момент на вал несущего винта не передается от двигателя, уст ановл енного в фюзел яже.
Ранее было сказано, что уравновешивание реактивного момента на вертолетах одновинтовой схемы с ме- ханическим приводом производится моментом, создаваемым тягой рулевого винта относительно центра тя- жести вертолета.
У двухвинтовых вертолетов компенсация реактивных моментов обоих несущих винтов достигается вра- щением винтов в разные стороны. Причем для соблюдения равенства противоположно направленных реактивных моментов обоих винтов винты выполняются совершенно одинаковыми с точной синхронизацией их оборотов.

Мощность, пере давае мая на несу щий ви нт, р авна
Из формулы видно, что чем меньше обороты несущего винта, тем больше крутящий момент, а следова-
тельно, и реактивный.
Число оборотов несущего винта вертолета значительно меньше числа оборотов самолетного винта. По- этому при одинаковой мощности двигателя реактивный момент несущего винта вертолета значительно больше, чем самолетного винта.
Крутящий и реактивный моменты Изменяются также в зависимости от величины тяги несущего винта. Так, например, для увеличения силы тяги винта необходимо увеличить общий шаг. Увеличение шага винта сопровождается ростом момента сопротивления его вращению. Поэтому с увеличением шага винта необходимо увеличить подводимый к винту крутящий момент. Если же этого не сделать, то число оборотов несущего винта будет уменьшаться, что приведет к снижению тяги несущего винта.
Следовательно, для увеличения тяги несущего винта необходимо увеличить не только шаг винта, но и крутящий момент. Для этого в кабине летчика установлен рычаг «шаг - газ», кинематически связанный с двигателем и механизмом, изменяющим шаг винта. При перемещении рычага происходит пропорциональное изме- нение крутящего момента и шага винта и одновременно изменение реактивного момента. На одновинтовом вертолете изменение реактивного момента требует соответствующего изменения тяги рулевого винта для устра- нения разворота.

§ 15. Сила тяги рулевого винта
Величину силы тяги рулевого винта (рис. 1.60) можно определить из равенства

растает мощность, потребляемая винтом, а следовательно, возрастает и потребная тяга, создаваемая рулевым винтом.
Рулевой винт работает в условиях косой обдувки, так как в полете плоскость его вращения не перпендикулярна к на правлени ю набегающ его по тока.
При косой обдувке жесткого винта изменяющаяся скорость потока, набегающего на его
лопасти, вызовет периодическое
изменение силы тяги каждой лопасти и приведет к возникновению вибраций.
Для выравнивания силы тяги лопастей во всех азимутах и
разгрузки лопастей от действия
изгибающих моментов лопасти реального рулевого винта крепятся к втулке при помощи горизонтальных шарниров, которые позволяют лопастям совершать маховые движения.
Наличие в конструкции втулки винта осевых шарниров обеспечивает поворот лопастей относительно про-
дольной оси, который необходим для изменения шага.
На тяжелых вертолетах вертикальные шарниры могут устанавливаться и на рулевых винтах.
§ 16. Располагаемая мощность несущего винта
В силовых установках современных вертолетов используются поршневые или турбовинтовые авиационные двигатели.
Особенностью работы поршневых авиационных двигателей воздушного охлаждения на вертолетах является
необходимость принудительной обдувки охлаждаемых поверхностей двигателя при помощи специальных вентиляторов. Принудительный обдув двигателей на вертолетах связан с недостаточными возможностями ис- пользования скоростного напора для охлаждения в поступательном полете и с отсутствием напора на режиме висения. На вертолетах с турбовинтовыми двигателями, как правило, устанавливаются вентиляторы для охлаж- дения главного редуктора, маслорадиаторов, генераторов и других агрегатов. Для привода вентиляторов за- трачивается часть мощности двигателя Noxл.
Часть мощности двигателя расходуется на преодоление трения в трансмиссии, соединяющей двигатель с
винтами N тp, на вращение рулевого винта Npв и на привод насосов гидравлической системы и других агрегатов
Nа.
Таким образом, мощность, передаваемая на несущий винт, оказывается меньше эффективной мощности
Nе, развиваемой на валу двигателя.
Если из эффективной мощности вычесть затраты, получим располагаемую мощность несущего винта Np
Np= Ne.- Noxл.- Nтp – Npв – Nа
Для различных вертолетов Np составляет 75- 85% Ne.
Иначе говоря, потери мощности на охлаждение, трансмиссию, рулевой виит и привод агрегатов составляют
15-25% эффективной мощности двигателя.
Эффективная мощность двигателя и располагаемая мощность несущего винта зависят от скорости и высоты
полета, однако ввиду небольших скоростей полета вертолета влиянием скорости на Ne и Np можно пренебречь.
Характер изменения располагаемой мощности от высоты полета зависит от типа двигателя и определяется
его высотной характеристикой (рис. 1.61).

Известно, что мощность поршневого двигателя без нагнетателя, при постоянных оборотах с подъемом на
высоту падает вследствие уменьшения весового заряда, топливовоздушной смеси, поступающей в цилиндры. Аналогично изменяется мощность, передаваемая на несущий винт (рис.1.61/а).
Мощность поршневого двигателя, снабженного односкоростным нагнетателем, с подъемом на высоту увеличивается до расчетной высоты вследствие увеличения весового заряда топливовоздушной смеси по причине снижения температуры окружающего воздуха и улучшения продувки цилиндров. Путем постепенного откры- вания воздушной заслонки нагнетателя давление наддува до расчетной высоты поддерживается постоянным. На расчетной высоте воздушная заслонка открывается полностью и мощность двигателя достигает максимума. Выше расчетной высоты эффективная мощность, а значит, и располагаемая мощность несущего винта уменьшаются так же, как у двигателя без нагнетателя (рис. 1.61, б).

Для двигателя с двухскоростным нагнетателем характер изменения эффективной и располагаемой мощностей от высоты полета приведен на рис. 1.61, в.
Для турбовинтового двигателя характер зависимости располагаемой мощности несущего винта от высоты полета приведен на рис. 1.61, г. Увеличение мощности турбовинтового двигателя до некоторой высоты объясняется принятой системой регулирования, обеспечивающей рост температуры газов перед турбиной до некоторой высоты.