Принцип действия большинства плазматронов мощностью от нескольких кВт до нескольких мегаватт, практически один и тот же. Между катодом, выполненным из тугоплавкого материала, и интенсивно охлаждаемым анодом, горит электрическая дуга.

Через эту дугу продувается рабочее тело (РТ) - плазмообразующий газ, которым может быть воздух, водяной пар, или что другое. Происходит ионизация РТ, и в результате на выходе получаем четвертое агрегатное состояние вещества, называемое плазмой.

В мощных аппаратах вдоль сопла ставится катушка эл.магнита, он служит для стабилизации потока плазмы по оси и уменьшения износа анода.

В этой статье описывается уже вторая по счету конструкция, т.к. первая попытка получить устойчивую плазму не увенчалась особым успехом. Изучив устройство "Алплаза", мы пришли к выводу что повторять его один в один пожалуй не стоит. Если кому интересно - все очень хорошо описано в прилагаемой к нему инструкции.

Наша первая модель не имела активного охлаждения анода. В качестве рабочего тела использовался водяной пар из специально сооруженного электрического парогенератора - герметичный котел с двумя титановыми пластинками, погруженными в воду и включенными в сеть 220V.

Катодом плазматрона служил вольфрамовый электрод диаметром 2 мм который быстро отгорал. Диаметр отверстия сопла анода был 1.2 мм, и оно постоянно засорялось.

Получить стабильную плазму не удалось, но проблески все же были, и это стимулировало к продолжению экспериментов.

В данном плазмогенераторе в качестве рабочего тела испытывались пароводяная смесь и воздух. Выход плазмы получился интенсивнее с водяным паром, но для устойчивой работы его необходимо перегревать до температуры в не одну сотню градусов, чтобы не конденсировался на охлажденных узлах плазматрона.

Такой нагреватель еще не сделан, поэтому эксперименты пока что продолжаются только с воздухом.

Фотографии внутренностей плазматрона:

Анод выполнен из меди, диаметр отверстия сопла от 1.8 до 2 мм. Анодный блок сделан из бронзы, и состоит из двух герметично спаянных деталей, между которыми существует полость для прокачки охлаждающей жидкости - воды или тосола.

Катодом служит слегка заостренный вольфрамовый стержень диаметром 4 мм, полученный из сварочного электрода. Он дополнительно охлаждается потоком рабочего тела, подаваемого под давлением от 0.5 до 1.5 атм.

А вот полностью разобранный плазматрон:

Электропитание подводится к аноду через трубки системы охлаждения, а к катоду - через провод, прицепленный его держателю.

Запуск, т.е. зажигание дуги, производится закручиванием ручки подачи катода до момента соприкосновения с анодом. Затем катод надо сразу же отвести на расстояние 2..4 мм от анода (пара оборотов ручки), и между ними продолжает гореть дуга.

Электропитание, подключение шлангов подачи воздуха от компрессора и системы охлаждения - на следующей схеме:

В качестве балластного резистора можно использовать любой подходящий электронагревательный прибор мощностью от 3 до 5 кВт, например подобрать несколько кипятильников, соединенных параллельно.

Дроссель выпрямителя должен быть рассчитан на ток до 20 A, наш экземпляр содержит около сотни витков толстой медной проволоки.

Диоды подойдут любые, рассчитанные на ток от 50 А и выше, и напряжение от 500 V.

Будьте осторожны! Этот прибор использует бестрансформаторное питание от сети.

Воздушный компрессор для подачи рабочего тела взят автомобильный, а для прокачки охлаждающей жидкости по замкнутому контуру используется автомобильный омыватель стекол. Электропитание к ним подводится от отдельного 12-вольтового трансформатора с выпрямителем.

Немного о планах на будущее

Как показала практика, и эта конструкция тоже оказалась экспериментальная. Наконец-то получена стабильная работа в течение 5 - 10 минут. Но до полного совершенства еще далеко.

Сменные аноды постепенно выгорают, а делать их из меди, да еще с резьбой, затруднительно, уж лучше бы без резьбы. Система охлаждения не имеет прямого контакта жидкости со сменным анодом, и из-за этого теплообмен оставляет желать лучшего. Более удачным был бы вариант с прямым охлаждением.

Детали выточены из имевшихся под рукой полуфабрикатов, конструкция в целом слишком сложна для повторения.

Также необходимо найти мощный развязывающий трансформатор, без него пользоваться плазматроном опасно.

И под завершение еще снимки плазматрона при разрезании проволоки и стальных пластинок. Искры летят почти на метр:)



Для резки листового металла используются различные механические приспособления, а также электросварка или газовый резак. Но кроме этих методов есть эффективный способ резки металла – плазменный резак. Установка заводского производства стоит достаточно дорого, но ее можно заменить самодельным плазморезом из сварочного трансформатора.

Установка плазменной резки состоит из следующих частей:

  • плазменный резак или плазмотрон, создающий поток плазмы;
  • сварочный трансформатор, питающий плазмотрон;
  • осциллятор или блок поджига дуги, подающий высокое напряжение в момент начала реза для формирования потока плазмы;
  • компрессор для создания потока воздуха через плазмотрон;
  • кабеля, соединяющие сварочный аппарат, плазменную горелку и разрезаемую деталь;
  • шланги, по которым подается воздух или другой газ и, при необходимости, охлаждающая жидкость.

Плазменная головка внешне напоминает горелку для сварочного полуавтомата. К ней также подключаются кабеля и шланги, но из сопла вместо проволоки выходит поток плазмы, разогретой до 8000°С.

Принцип работы устройства

Установка плазменной резки представляет из себя своего рода гибрид электросварки и газового резака – металл плавится электричеством, а расплав выдувается потоком газа.

Основной частью этого аппарата является плазмотрон. Внутри него находится медный электрод со стержнем из тугоплавкого металла – бериллия, тория, циркония или гафния. На конце головки находится сопло, формирующее поток плазмы. Сопло отделено от электрода изолятором. Рез производится обратной полярностью – электрод является анодом, а сопло и разрезаемый металл катодом.

Работает установка следующим образом:

  • при включении агрегата на электрод и сопло подается напряжение от сварочного трансформатора;
  • при помощи осциллятора между этими элементами возникает вспомогательная электрическая дуга, ограниченная добавочным сопротивлением;
  • эта дуга разогревает газ, подаваемый в плазмотрон до 8000°С, что превращает его в плазму и увеличивает давление внутри головки;
  • потоком воздуха или другого газа поток плазмы выдувается из сопла;
  • при выходе из него плазма сжимается в узкий пучок, скорость которого может достигать 1500м/с, а температура 30000°С;
  • при соприкосновении плазмы и разрезаемой детали ток начинает идти через массу трансформатора;
  • токовое реле, установленное последовательно с деталью, отключает осциллятор и вспомогательную дугу.

Толщина разрезаемого металла зависит от силы тока сварочного трансформатора.

Информация! При токе более 100А плазмотрон и подходящий к нему кабель нуждаются в охлаждении проточной водой или другой охлаждающей жидкостью.

Достоинства и недостатки плазменной резки

Резка металла плазмой имеет преимущества перед другими способами:

  • возможность реза любых металлов и сплавов;
  • высокая скорость обработки;
  • чистая линия разреза без наплывов и потеков материала;
  • обработка производится без прогрева разрезаемых деталей;
  • не используются огнеопасные материалы, такие, как баллоны с кислородом и природным газом.

Недостатками плазменной резки являются:

  • сложность и высокая цена установки;
  • для каждого оператора с плазмотроном необходим отдельный трансформатор и пульт управления;
  • угол реза не более 50°;
  • большой шум при работе.

Для чего нужен трансформатор

Источником питания плазменной дуги служит трансформатор с выпрямителем. От его мощности зависит сила тока и скорость реза металла, а от выходного напряжения толщина разрезаемого материала.

Подключить установку плазменной резки можно не только к специальному трансформатору, но и к сварочному аппарату, обладающему необходимыми характеристиками.

Обойтись без такого устройства нельзя по нескольким причинам:

  • Трансформатор по самому принципу своей работы ограничивает ток во вторичной обмотке. При питании плазмотрона прямо от сети аппарат будет работать в режиме КЗ, поэтому ток реза и потребляемая мощность превысят любые допустимые величины.
  • Сварочный аппарат при работе выполняет роль разделительного трансформатора. При подключении плазмотрона без него горелка и деталь окажутся под напряжением, что опасно для жизни людей.

Схема

Как любая электроустановка, агрегат плазменной резки собирается согласно электросхемам.

Принципиальная

На этой схеме указаны все элементы установки независимо от их расположения. Основной целью этого чертежа является показать связи между деталями и упростить понимание работы установки.

На принципиальной схеме аппарата изображены следующие элементы:

  • питающий трансформатор с выпрямителем;
  • осциллятор;
  • токовое реле;
  • резистор, ограничивающий ток вспомогательной дуги;
  • контактор, отключающий эту дугу;
  • пускатель, включающий аппарат;
  • кнопка включения реза;
  • компрессор с аппаратурой управления.

Информация! Силовые цепи могут изображаться толстыми линиями.

Управления

В схеме управления показаны все кнопки и регуляторы, которые находятся на пульту или непосредственно на плазмотроне:

  • кнопки включения компрессора;
  • регулятор давления воздуха;
  • при наличии охлаждающей жидкости кнопки и регуляторы ее потоком;
  • амперметр;
  • вольтметр;
  • датчики протока воды и воздуха;
  • кнопка управления резом (может находиться на рукоятке плазмотрона).

Информация! Все эти элементы изображены так же на принципиальной схеме.

Подключения

На схеме подключения указаны кабеля и шланги, соединяющие все элементы между собой. На ней указывается сечение и длина проводов, а также место подключения.

Как изготовить плазменный резак

Рабочим инструментом установки плазменной резки является резак, или плазмотрон. Он создает поток воздуха, превращенный в плазму, разогретую до 30000°С, которая разрезает металл.

Изготовить его можно самостоятельно. Желательно в качестве образца использовать готовую конструкцию. Состоит плазмотрон из нескольких основных элементов:

  • Центральный держатель со сменным электродом. При токе реза до 100А и толщине металла до 50 мм держатель изготавливается из медного прута, в более мощных аппаратах внутри есть каналы для водяного охлаждения. Для поджига дуги расстояние между электродом и соплом должно быть 2 мм, поэтому для регулировки плазмотрона центральный стержень делается подвижным.
  • Изолятор между центральным электродом и наружным корпусом. Часть изолятора, ближняя к соплу, изнашивается и изготавливается сменной из фторопласта.
  • Наружный корпус со сменным соплом. Плазма образуется в камере между электродом и соплом. При изготовлении устройства с водяным охлаждением внутри стенок находятся каналы для охлаждающей жидкости.
  • Сменные насадки, кабеля – силовой и для вспомогательной дуги, шланги.

Информация! В устройствах с водяным охлаждением силовой кабель без изоляции и находится внутри шланга, подающего воду к горелке.

Один из способов изготовить такое устройство – это сделать его из горелки для аргонно-дуговой сварки. В ней есть большинство необходимых элементов:

  • вольфрамовый электрод Ø4мм с возможностью регулировки положения;
  • клемма и кабель для подачи к нему тока для сварки;
  • направляющие каналы и шланг для подвода газа к соплу.

Для доработки необходимо:

  • снять тонкостенное латунное сопло;
  • накрутить вместо него изолирующую прокладку из фторопласта цилиндрической формы с резьбой снаружи и внутри цилиндра;
  • сверху на прокладку накрутить латунный корпус с креплением для медного сопла;
  • к корпусу припаять или прижать хомутом кабель для вспомогательной дуги;
  • в рукоятке установить микровыключатель, включающий режим реза.

Сменные насадки

Сменными элементами, которые изнашиваются во время работы, являются электроды и сопла:

  • Электрод изготавливается из меди со вставкой из тугоплавкого металла – бериллия, тория, циркония и гафния. Вставка находится в центре, напротив отверстия сопла. Вспомогательная кратковременная дуга появляется между краем электрода и соплом, рабочая постоянная между вставкой и деталью, поэтому вставка, является самым изнашивающимся элементом и заменяется вместе с электродом.
  • Сопло формирует плазменную струю, образованную электродом. Оптимальный размер сопла 30мм, в центре находится отверстие Ø2мм. Во время работы плазма, проходящая через него, увеличивает диаметр канала, что делает поток газа шире, а рез менее аккуратным. Поэтому сопло, как и электрод, следует периодически менять.

Выбор газа

Несмотря на то, что любой металл можно разрезать потоком воздуха, создаваемым компрессором, для каждого из металлов есть оптимальный состав газа:

  • медь, латунь и титана – азот;
  • алюминий – смесь азота с водородом;
  • высоколегированная сталь – аргон.

Как изготовить сварочный трансформатор

Источником питания плазмы является сварочный трансформатор. Как и некоторые другие элементы его можно изготовить самостоятельно.

Необходимые параметры

Трансформатор для плазменной резки отличается от обычного сварочника напряжением холостого хода и составляет 220-250В. Это необходимо для создания и поддержания дуги между электродом и разрезаемой деталью. Мощность и ток вторичной обмотки зависят от предполагаемой толщины металла:

  • 20А, 2,5кВт – 6 мм;
  • 50А, 6кВт – 12 мм;
  • 80А, 10кВт – 18-25 мм.

Источник питания необходим с “мягкой” характеристикой, напряжение при работе составляет 70В. Для работы вспомогательной дуги достаточен ток 5А. Он ограничивается сопротивлением 30-50Ом, изготовленным из толстой нихромовой проволоки.

Информация! Использовать обычный или инверторный сварочник не получится. У этих аппаратов недостаточное напряжение ХХ.

Как рассчитать

Расчет питающего трансформатора сводится к определению необходимых сечений магнитопровода, первичной и вторичной обмотки и числа витков.

Для аппарата, предназначенного для разрезания металла до 12 мм при токе 50А, напряжении холостого хода 200В и напряжении сети 220В эти параметры составляют:

  • сечение магнитопровода – 107 мм²
  • первичная обмотка – 225 витков медным проводом Ø4,7 мм;
  • вторичная обмотка – 205 витков медной проводом Ø5,04 мм².

Изготовление трансформатора

В связи с тем, что трансформатор должен иметь “мягкую” характеристику, катушки располагаются отдельно друг от друга. При использовании О-образного сердечника они находятся на разных стержнях, на Ш-образном магнитопроводе обмотки располагаются вдоль средней части.

Намотка катушек производится по расчетным параметрам на каркасах их электротехнического картона. Готовые обмотки обматываются стеклолентой или киперной лентой и покрываются краской.

После намотки обмоток и сборки магнитопровода на трансформатор крепится и подключается диодный мост из 4 диодов с радиаторами, собранный на текстолитовой площадке. Собранный трансформатор помещается в корпус, а вывода обмоток и диодного моста подключаются к клеммам на передней панели. Подключение выполняется согласно принципиальной схеме, учитывая наличие амперметров, вольтметров, пускателей и других деталей.

Осциллятор, подключенный последовательно со сварочником, имеет высокое выходное напряжение высокой частоты. Поэтому диоды в выпрямителе необходимо использовать высокочастотные или установить отдельный диодный мост, специально для вспомогательной дуги.

Другие комплектующие

Кроме плазмотрона и трансформатора в агрегате плазменной резки есть и другие элементы.

Компрессор

Самый распространенный рабочий газ – это сжатый воздух. Его можно использовать при резке почти всех металлов и сплавов. Источником сжатого воздуха является компрессор. Его можно использовать любой конструкции, минимальная производительность зависит от толщины металла:

  • 16 мм – 140л/мин;
  • 20 мм – 170л/мин
  • 30 мм – 190л/мин.

Для более стабильной работы необходим ресивер емкостью от 50 литров, давление создаваемое компрессором должно быть более 4,5Бар.

Кабели и шланги

Для работы плазмореза с воздушным охлаждением кабель-шланговый пакет состоит из следующих элементов:

  • Силовой кабель. Его сечение зависит от номинальной мощности устройства. При токе 50А, достаточным для резки металла толщиной 10 мм и проводе в виниловой изоляции оно составляет 6мм². При использовании кабеля в жаропрочной изоляци сечение соответственно уменьшается. Этих кабелей необходимо 2 – один в кабель-шланговом пакете для электрода и второй для массы.
  • Провод для вспомогательной дуги. Сечение достаточно 1,5 мм². По допустимому нагреву кабель допускается более тонкий, но он имеет недостаточную механическую прочность.
  • Шланг для подачи воздуха. Внутренний диаметр 10 мм.
  • Провода для подключения микровыключателя.

Осциллятор

Это прибор, увеличивающий напряжение ХХ сварочного трансформатора до величины, обеспечивающий появление электрической дуги без предварительного контакта электрода и массы.

Осцилляторы, используемые в агрегатах плазменной резки, подключаются последовательно с трансформатором и добавляют к постоянному напряжению 220В переменное, частотой до 250кГц и напряжением до 6кВ.

Сам по себе этот прибор не выдает ток, опасный для здоровья людей и, тем более, не способен создать дугу для сварки или резки металла. Основное предназначение этого устройства в создании искры между электродами. Эта искра является проводником и “прокладывает путь” для сварочного выпрямителя.

Совет! Вместо осциллятора допускается использование электронного зажигания автомобиля.

Окончательная сборка

Сборка самодельного агрегата плазменной резки заключается в соединении всех элементов кабелями и шлангами:

  • кабеля для электрода, массы и вспомогательной дуги подключаются к соответствующим клеммам на сварочном трансформаторе;
  • воздушный шланг присоединяется к ресиверу компрессора;
  • провода, идущие к микровыключателю на рукоятке, подключаются к схеме управления.

Проверка

Для проверки собранного устройства необходимо произвести пробный рез металла:

  • подать питание на трансформатор;
  • через 10 минут отключить и проверить обмотки на нагрев;
  • если они холодные, снова подать питание;
  • включить компрессор;
  • после заполнения ресивера открыть воздушный кран и направить поток воздуха через плазмотрон;
  • нажатием кнопки микровыключателя зажечь вспомогательную дугу;
  • при ее наличии произвести пробный рез металла.

После завершения испытаний отключить аппарат от сети и снова проверить все элементы на нагрев.

Правила техники безопасности при работе плазморезом

Процесс плазменной резки при несоблюдении правили работы является опасным для здоровья и жизни людей. Основными вредными факторами являются:

  • Брызги расплавленного металла. Во время реза поток плазмы расплавляет металл и выдувает его из разрезаемой детали. Попадание расплавленных капель на горючие вещества приводит к их возгоранию, а попадание на кожу вызывает сильные ожоги, вплоть до IV степени (обугливание). Для защиты необходимо направлять поток плазмы в сторону от людей и горючих материалов.
  • Вредные газы и пыль. Во время реза металл на только расплавляется, но и горит. Образующийся при этом дым вреден для здоровья. Кроме того горят загрязнения на поверхности деталей. Поэтому рабочее место необходимо оборудовать вытяжной вентиляцией и работать в респираторе.
  • Яркий свет. Во время работы электросварки и резки плазмой, образованной электрической дугой, кроме видимого света появляется ультрафиолет. Этот вид излучения приводит к ожогам сетчатки глаз. Для защиты рабочее место огораживается переносными щитами, а резчик должен пользоваться защитным щитком.
  • Температура. После завершения работы края детали некоторое время остаются нагретыми до высокой температуры и прикосновение к ним может привести к ожогам. Для того, чтобы избежать подобных травм к разрезанным деталям можно прикасаться только в защитных рукавицах или через некоторое время, достаточное для остывания кромок.

Средняя стоимость трансформаторного плазмореза, собранного своими руками

Стоимость самодельного плазмореза зависит от цены комплектующих. В идеале такой аппарат собирается из различного старого хлама и запчастей, имеющихся в мастерской.

В любом случае следует ориентироваться на цену магазинного плазмореза, которая зависит от толщины разрезаемого металла, наличия дополнительных аксессуаров, фирмы производителя и других факторов.

Средняя стоимость подобных устройств зависит от толщины разрезаемого металла:

  • до 30 мм – 150–300 тыс. руб.;
  • 25 мм – 81–220 тыс. руб.;
  • 17 мм – 45–270 тыс. руб.;
  • 12 мм – 32–230 тыс. руб.;
  • 10 мм – 25–20 тыс. руб.;
  • 6 мм – 15–20 тыс. руб.

Совет! У разных производителей различная цена на комплектующие, поэтому один из способов сэкономить - это приобрести все детали по-отдельности и собрать аппарат самостоятельно из готовых элементов.

Параметры плазменной резки различных металлов

Несмотря на то, что все материалы можно резать в одном режиме, для улучшения качества обработки различные металлы и сплавы требуют разных режимов реза, газа и настройки оборудования:

  • Углеродистая сталь – воздух, азот, кислород. Диаметр сопла 3 мм, скорость реза 0,3-5,5 мм/мин.
  • Нержавеющая сталь – воздух, азот, водородно-аргонная смесь. Диаметр сопла 3 мм, скорость реза 0,3-5,5 мм/мин.
  • Алюминий – азот, водородно-аргонная смесь. Диаметр сопла 2-3 мм, скорость реза 0,1-1,6 мм/мин.
  • Медь и сплавы – воздух свыше 40 мм, азот – 5-15 мм. Диаметр сопла 3-3,5 мм, скорость реза 0,4-3 мм/мин

Информация! Скорость реза зависит от тока установки и толщины детали. При этом важно, чтобы конец дуги “не отставал” от ее начала.

Плазменная резка металла - это современный способ обработки. Наличие такого аппарата, сделанного из сварочного трансформатора, в мастерской расширяет возможности мастера.

Плазменный резак своими руками: самодельный празморез из сварочного инвертора

Плазменные резаки активно используются в мастерских и предприятиях, связанных с цветными металлами. Большинство небольших предприятий применяют в работе плазменный резак, изготовленный своими руками.

Плазменный резак хорошо себя показывает при разрезе цветных металлов, поскольку позволяет локально прогревать изделия и не деформировать их. Самостоятельное производство резаков обусловлено высокой стоимостью профессионального оборудования.

В процессе изготовления подобного инструмента используются комплектующие от других электроприборов.

Особенности и назначение плазменного резака

Инвертор плазменной резки используется для выполнения работ как в домашних, так и в промышленных условиях. Существует несколько видов плазморезов для работы с различными типами металлов.

Различают:

  • Плазморезы, работающие в среде инертных газов, например, аргона, гелия или азота.
  • Инструменты, работающие в среде окислителей, например, кислорода.
  • Аппаратура, предназначенная для работы со смешанными атмосферами.
  • Резаки, работающие в газожидкостных стабилизаторах.
  • Устройства, работающие с водной или магнитной стабилизацией. Это самый редкий вид резаков, который практически невозможно найти в свободной продаже.
  • Плазменный резак или плазматрон – это основная часть плазменной резки, отвечающая за непосредственную нарезку металла.

    Плазменный резак в разборе.

    Большинство инверторных плазменных резаков состоят из:

    • форсунки;
    • электрода;
    • защитного колпачка;
    • сопла;
    • шланга;
    • головки резака;
    • ручки;
    • роликового упора.

    Затем, ток, идущий через ионизированный газ, разрезает металл путем локального плавления. После этого струя плазмы снимает остатки расплавленного металла и получается аккуратный срез.

    По виду воздействия на металл различают такие виды плазматронов:

  • Аппараты косвенного действия.
    Данный вид плазматронов не пропускает через себя ток и пригоден лишь в одном случае – для резки неметаллических изделий.
  • Плазменная резка прямого действия.
    Применяется для разрезки металлов путем образования плазменной струи.
  • Делаем плазменный резак своими руками

    Плазменная резка своими руками может быть изготовлена в домашних условиях. Неподъемная стоимость на профессиональное оборудование и ограниченное количество представленных на рынке моделей вынуждают умельцев собирать плазморез из сварочного инвертора своими руками.

    Самодельный плазморез можно выполнить при условии наличия всех необходимых компонентов.

    Перед тем как сделать плазморежущую установку, необходимо подготовить следующие комплектующие:

  • Компрессор.
    Деталь необходима для подачи воздушного потока под давлением.
  • Плазмотрон.
    Изделие используется при непосредственной резке металла.
  • Электроды.
    Применяются для розжига дуги и создания плазмы.
  • Изолятор.
    Предохраняет электроды от перегрева при выполнении плазменной резки металла.
  • Сопло.
    Деталь, размер которой определяет возможности всего плазмореза, собранного своими руками из инвертора.
  • Сварочный инвертор.
    Источник постоянного тока для установки. Может быть заменен сварочным трансформатором.
  • Схема работы плазменного резака.

    Трансформаторные источники постоянного тока характеризуются следующими недостатками:

    • высокое потребление электрической энергии;
    • большие габариты;
    • труднодоступность.

    К преимуществам такого источника питания можно отнести:

    • низкую чувствительность к перепадам напряжения;
    • большую мощность;
    • высокую надежность.

    Инверторы, в качестве блока питания плазмореза можно использовать, если необходимо:

    • сконструировать небольшой аппарат;
    • собрать качественный плазморез с высоким коэффициентом полезного действия и стабильной дугой.

    Благодаря доступности и легкости инверторного блока питания плазморезы на его основе могут быть сконструированы в домашних условиях. К недостаткам инвертора можно отнести лишь сравнительно малую мощность струи. Из-за этого толщина металлической заготовки, разрезаемой инверторным плазморезом, серьезно ограничена.

    Одной из главнейших частей плазмореза является ручной резак.

    Сборка данного элемента аппаратуры для резки металла осуществляется из таких компонентов:

    • рукоять с пропилами для прокладки проводов;
    • кнопка запуска горелки на основе газовой плазмы;
    • электроды;
    • система завихрения потоков;
    • наконечник, защищающий оператора от брызг расплавленного металла;
    • пружина для обеспечения необходимого расстояния между соплом и металлом;
    • насадки для снятия окалин и нагара.

    Резка металла различной толщины осуществляется путем смены сопел в плазмотроне. В большинстве конструкций плазмотрона, сопла закрепляются специальной гайкой, с диаметром, позволяющим пропустить конусный наконечник и зажать широкую часть элемента.

    После сопла располагаются электроды и изоляция. Для получения возможности усиления дуги при необходимости в конструкцию плазматрона включают завихритель воздушных потоков.

    Сделанные своими руками плазморезы на основе инверторного источника питания являются достаточно мобильными. Благодаря малым габаритам такую аппаратуру можно использовать даже в самых труднодоступных местах.

    Чертежи

    В глобальной сети интернет имеется множество различных чертежей плазменного резака. Проще всего изготовить плазморез в домашних условиях, используя инверторный источник постоянного тока.

    Электрическая схема плазмореза.

    Наиболее ходовой технический чертеж резака на основе плазменной дуги включает следующие компоненты:

  • Электрод.
    На данный элемент подается напряжение от источника питания для осуществления ионизации окружающего газа. Как правило, в качестве электрода используются тугоплавкие металлы, образующие прочный окисел. В большинстве случаев конструкторы сварочных аппаратов используют гафний, цирконий или титан. Лучшим выбором материала электрода для домашнего использования является гафний.
  • Сопло.
    Компонент автоматического плазменный сварочного аппарата формирует струю из ионизированного газа и пропускает воздух, охлаждающий электрод.
  • Охладитель.
    Элемент используется для отвода тепла от сопла, поскольку при работе температура плазмы может достигать 30 000 градусов Цельсия.
  • Большинство схем аппарата плазменной резки подразумевают такой алгоритм работы резака на основе струи ионизированного газа:

  • Первое нажатие на кнопку пуск включает реле, подающее питание на блок управления аппаратом.
  • Второе реле подает ток на инвертор и подключает электрический клапан продувки горелки.
  • Мощный поток воздуха попадает в камеру горелки и очищает ее.
  • Через определенный промежуток времени, задаваемый резисторами, срабатывает третье реле и подает питание на электроды установки.
  • Запускается осциллятор, благодаря которому производится ионизация рабочего газа, находящегося между катодом и анодом. На данном этапе возникает дежурная дуга.
  • При поднесении дуги к металлической детали зажигается дуга между плазмотроном и поверхностью, называющаяся рабочей.
  • Отключение подачи тока для розжига дуги при помощи специального геркона.
  • Проведение резальных или сварочных работ. В случае пропажи дуги, реле геркона вновь включает ток и разжигает дежурную струю плазмы.
  • При завершении работ после отключения дуги, четвертое реле запускает компрессор, воздух которого охлаждает сопло и удаляет остатки сгоревшего металла.
  • Что нам понадобится?

    Чертеж плазменного резака.

    Для создания аппарата плазменной сварки необходимо обзавестись:

    • источником постоянного тока;
    • плазмотроном.

    В состав последнего входят:

    • сопло;
    • электроды;
    • изолятор;
    • компрессор мощностью 2-2.5 атмосферы.

    Большинство современных мастеров изготавливают плазменную сварку, подключаемую к инверторному блоку питания. Сконструированный при помощи данных компонентов плазмотрон для ручной воздушной резки работает следующим образом: нажатие на управляющую кнопку зажигает электрическую дугу между соплом и электродом.

    Сборка инвертора

    В случае, если фабричного инвертора нет в наличии, можно собрать самодельный.

    Инверторы для резаков на основе газовой плазмы, как правило, имеют в строении такие комплектующие:

    • блок питания;
    • драйвера силовых ключей;
    • силовой блок.

    Плазменная горелка в разрезе.

    Сборка инвертора для плазморезов или сварочного оборудования не может обойтись без необходимых инструментов в виде:

    • набора отверток;
    • паяльника;
    • ножа;
    • ножовки по металлу;
    • крепежных элементов резьбового типа;
    • медных проводов;
    • текстолита;
    • слюды.

    Блок питания самодельного инвертора для плазменной резки собирается на базе ферритового сердечника и должен иметь четыре обмотки:

    • первичную, состоящую из 100 витков проволоки, толщиной 0.3 миллиметра;
    • первая вторичная из 15 витков кабеля с толщиной 1 миллиметр;
    • вторая вторичная из 15 витков проволоки 0.2 миллиметра;
    • третья вторичная из 20 витков 0.3 миллиметровой проволоки.

    Силовой блок самодельного инвертора должен состоять из специального трансформатора. Для создания данного элемента следует подобрать два сердечника и намотать на них медную проволоку толщиной 0.25 миллиметров.

    Отдельного упоминания стоит система охлаждения, без которой инверторный блок питания плазмотрона может быстро выйти из строя.

    Чертеж технологии плазменной резки.

    При работе на аппарате плазменной резки для достижения наилучших результатов нужно соблюдать рекомендации:

    • регулярно проверять правильность направления струи газовой плазмы;
    • проверять правильность выбора аппаратуры в соответствии с толщиной металлического изделия;
    • следить за состоянием расходных деталей плазмотрона;
    • следить за соблюдением расстояния между плазменной струей и обрабатываемым изделием;
    • всегда проверять используемую скорость резки, чтобы избежать возникновения окалин;
    • время от времени диагностировать состояние системы подвода рабочего газа;
    • исключить вибрацию электрического плазмотрона;
    • поддерживать чистоту и аккуратность на рабочем месте.

    Заключение

    Аппаратура для плазменной резки – это незаменимый инструмент для аккуратной нарезки металлических изделий. Благодаря продуманной конструкции плазмотроны обеспечивают быстрый, ровный и качественный порез металлических листов без необходимости последующей обработки поверхностей.

    Большинство рукоделов из небольших мастерских предпочитают своими руками собирать мини резаки для работы с не толстым металлом. Как правило, самостоятельно сделанный плазморез по характеристикам и качеству работы не отличается от заводских моделей.

    Рекомендации, как изготовить плазменный резак из инвертора своими руками

    Как правило, плазмой листовой металл режется на крупных производствах, и делается это при изготовлении деталей сложной конфигурации. На промышленных станках режутся любые металлы: сталь, медь, латунь, алюминий, сверхтвердые сплавы.

    Примечательно, что плазменный резак вполне можно сделать собственноручно, хотя возможности устройства в этом случае будут несколько ограниченными. В крупносерийном производстве самодельный ручной плазморез непригоден, но вырезать им детали в своей мастерской, цехе или гараже удастся.

    В отношении конфигурации и твердости обрабатываемых заготовок ограничений практически нет. Однако они касаются скорости резания, размеров листа и толщины металла.

    Описание самодельного плазмореза из инвертора

    Плазморез своими руками легче смастерить, взяв за основу инверторный сварочный аппарат. Такой агрегат будет простым по конструкции, функциональным, с доступными основными узлами и деталями. Если какие-то детали не продаются, их тоже можно изготовить самостоятельно в мастерской с оборудованием средней сложности.

    Самодельный аппарат не оборудуется ЧПУ, в чем его недостаток и преимущество одновременно. Минус ручного управления в невозможности изготовления двух совершенно одинаковых деталей: мелкие серии деталей в чем-то будут отличаться. Плюс в том, что не придется покупать дорогостоящее ЧПУ. Для мобильного плазмореза ЧПУ не нужно, так как того не требуют выполняемые на нем задачи.

    Главные составные части самодельного агрегата:

    • плазмотрон;
    • осциллятор;
    • источник постоянного тока;
    • компрессор или баллон со сжатым газом;
    • кабели питания;
    • шланги подключения.

    Итак, сложных элементов в конструкции нет. Однако все элементы должны иметь определенные характеристики.

    Источник тока

    Плазменная резка требует того, чтобы сила тока была, по крайней мере, как для сварочного аппарата средней мощности.

    Ток такой силы вырабатывается обыкновенным сварочным трансформатором и инверторным аппаратом.

    В первом случае конструкция получается условно мобильной: из-за большого веса и габаритов трансформатора ее перемещение затруднено. Вместе с баллоном сжатого газа или компрессором система получается громоздкой.

    Трансформаторы имеют невысокий КПД, из-за чего расход электроэнергии при резке металла получается повышенным.

    Обратите внимание

    Схема с инвертором несколько проще и удобнее, а еще более выгодна в плане затрат энергии. Из сварочного инвертора выйдет довольно компактный резак, который разрежет металл толщиной до 30 мм. Промышленные установки режут металлические листы такой же толщины. Плазменный резак на трансформаторе способен разрезать даже более толстые заготовки, хотя подобное требуется не так часто.

    Плюсы плазменной резки видны как раз на тонких и сверхтонких листах.

    • Гладкость кромок.
    • Точность линии.
    • Отсутствие брызг металла.
    • Отсутствие перегретых зон около места взаимодействия дуги и металла.

    Самодельный резак собирается на базе инверторного сварочного аппарата любого типа. Неважно, какое количество рабочих режимов, нужен лишь постоянный ток силой больше 30 А.

    Плазмотрон

    Вторым по важности элементом является плазмотрон. Плазменный резак состоит из основного и добавочного электродов, первый сделан из тугоплавкого металла, а второй представляет собой сопло, обычно медное. Основной электрод служит катодом, а сопло – анодом, и во время работы это – обрабатываемая токопроводящая деталь.

    Если рассматривать плазмотрон прямого действия, дуга возникает между заготовкой и резаком. Плазмотроны косвенного действия режут плазменной струей. Аппарат из инвертора рассчитан на прямое действие.

    Электрод и сопло являются расходными материалами и заменяются по мере износа. Кроме них, в корпусе имеется изолятор, который разделяет катодный и анодный узлы, еще есть камера, где вихрится подаваемый газ. В сопле, коническом или полусферическом , сделано тонкое отверстие, через которое вырывается газ, раскаленный до 3000-5000°C .

    В камеру газ поступает из баллона или подается из компрессора по шлангу, который совмещен с кабелями питания, образующими пакет из шлангов и кабелей. Элементы соединены в изоляционном рукаве либо соединены жгутом. Газ идет в камеру через прямой патрубок, который находится сверху или сбоку вихревой камеры, обеспечивающей перемещение рабочей среды лишь в одну сторону.

    Принцип работы плазмотрона

    Газ, поступающий под давлением в пространство между соплом и электродом, проходит в рабочее отверстие, удаляясь после в атмосферу.

    С включением осциллятора – устройства, которое вырабатывает импульсный высокочастотный ток, – между электродами появляется предварительная дуга и нагревает газ в ограниченном пространстве камеры сгорания. Поскольку температура нагрева очень высокая, газ превращается в плазму.

    В этом агрегатном состоянии ионизированы, то есть электрически заряжены, практически все атомы. Давление в камере резко повышается, и газ вырывается наружу раскаленной струей.

    При поднесении к детали плазмотрона возникает вторая, более мощная, дуга. Если сила тока осциллятора – 30-60 А, рабочая дуга возникает при силе в 180-200 А.

    Она дополнительно разогревает газ, разгоняющийся под действием электричества до 1500 м/с. Комбинированное действие плазмы высокой температуры и скорости движения режет металл по тончайшей линии.

    Толщину разреза определяют свойства сопла.

    Плазмотрон косвенного действия работает иначе. Роль главного анода в нем играет сопло. Из резака вместо дуги вырывается струя плазмы, режущая не токопроводящие материалы. Самодельное оборудование данного типа работает крайне редко.

    В связи со сложностью устройства плазмотрона и тонких настроек сделать его в кустарных условиях практически невозможно, хотя чертежи найти нетрудно.

    Он работает под высокими температурами и давлениями и становится опасным, если что-то сделано неправильно!

    Осциллятор

    Если некогда заниматься сборкой электрических схем и поиском деталей, возьмите осцилляторы заводского изготовления, к примеру, ВСД-02. Характеристики этих устройств более всего подходят для работы с инвертором. Осциллятор подсоединяется в схему питания плазмотрона последовательно или параллельно, в зависимости от того, что диктует инструкция конкретного прибора.

    Рабочий газ

    Перед тем, как приступить к изготовлению плазмореза, продумайте сферу его применения. Если предстоит работа исключительно с черными металлами, обойтись можно одним лишь компрессором. Для меди, латуни и титана потребуется азот, а алюминий режется в смеси азота с водородом. Высоколегированные стали режут в аргоновой атмосфере, здесь аппарат рассчитывают и под сжатый газ.

    Транспортировка устройства

    Ввиду сложности конструкции устройства и многочисленности составляющих его компонентов, аппарат плазменной резки трудно разместить в ящике или переносном корпусе. Рекомендуется использовать складскую тележку для перемещения товаров. На тележке компактно расположится:

    • инвертор;
    • компрессор или баллоны;
    • кабельно-шланговая группа.

    В пределах мастерской или цеха с перемещением проблем не будет. Когда аппарат потребуется транспортировать на какой-либо объект, он загружается в прицеп легковой машины.

    Плазменный сварочный аппарат своими руками –

    Главная страница » Своими руками » Плазменный сварочный аппарат своими руками

    Практическая конструкция самодельного плазменного аппарата не фантастика. Имея хотя бы обычный сварочный трансформатор или инверторный сварочник, можно создать горелку. Она была бы неплохим дополнением к уже имеющемуся оборудованию. Предельно простая, но рабочая, конструкция изображена ниже.

    Катод можно изготовить из вольфрамового сварочного электрода 4 мм. Он фиксируется в держателе стопорным винтом или приваривается. Держатель можно изготовить из стали. Ручка из изолирующего материала. Изолирующая втулка изготавливается из фторопласта, фенопласта, гетинаксовой трубки. Материал должен быть изолирующим, стойким к нагреву. Крышка из стали или латуни.

    Анод медный или латунный (желательно помассивнее, но без фанатизма), а сопло из чистой электротехнической меди. Катод подается винтом по мере выгорания. Сопло отвинчивается и меняется по мере износа. Сначала сопло работает хорошо в режиме реза, затем его прочищают рассверливанием, слегка зенкуют от заусенцев. Им еще можно варить и паять некоторое время.

    И, наконец, утилизировать, переплавив в заготовку для нового сопла.

    Резьба между соплом и анодом смазывается графитом. Между держателем катода и крышкой – им же. Можно взять обычный карандаш и мелко растолочь. Такая смазка отлично проводит ток и не закоксуется.

    Размеры и толщины зависят от мощности горелки. В этой горелке дуга возбуждается искрой высокого напряжения. Это очень важный момент и об этом чуть ниже.

    Схема горелки с контактным поджигом (подвижный катод) окажется гораздо сложнее механически: придется уплотнять подвижный шток, потребуется возвратная пружина и возникнет много побочных проблем.

    Зачем делать из горелки винтовку М-16? В домашних условиях проще решить задачу электрическими способами. К сожалению, размер статьи не позволяет привести все подробности, но основной принцип будет показан дальше.

    Рабочий газ подается через штуцер. А как насчет спирто-водяной смеси? Можно сделать и это.

    В принципе, для этого достаточно подавать ее в парообразном состоянии от маленького перегонного куба, если вы сможете стабилизировать и регулировать давление пара.

    Также можно охлаждать анод, слегка распыляя на него воду прямо снаружи. Этот способ охлаждения куда эффективнее проточного. Теплота испарения воды весьма значительна.

    Варианты схем осцилляторов (только принцип работы) на рисунках ниже. Красным цветом показано самодельное дополнение оборудования, черным – стандартный покупной сварочный инвертор, вторичная цепь которого упрощенно показана диодом D1 и конденсатором С1. Горелка уже обсуждалась.

    Это осциллятор последовательного типа. Генератор импульсов должен вырабатывать мощные импульсы тока для трансформатора Т2.

    Это связано с тем, что вторичная обмотка Т2 включена в разрыв цепи сварочного тока и вынужденно имеет малое число витков толстого провода.

    Конденсатор C2 совершенно необходим, он закорачивает контур высокого напряжения и защищает элементы инвертора в его выходной цепи (да и не только). В домашних условиях лучше выбрать второй вариант.

    Во второй схеме, параллельного типа, первичная обмотка Т2 возбуждается куда меньшим током, чем в предыдущем варианте. Однако, дроссель L2 также необходим как и конденсатор C2 в предыдущей схеме.

    Дроссель подавляет ток, ответвляемый от цепи высокого напряжения повышающего трансформатора в инвертор и защищает его. В обеих схемах частота выбирается порядка десятков кГц.

    Трансформаторы Т2 и дроссель L2 намотаны на ферритовом кольцевом сердечнике или сердечнике от строчного трансформатора телевизора.

    Дуга запускается нажатием на кнопку Пуск. В сухой горелке в течение долей секунды должна загореться дуга и войти в режим горения от основного тока инвертора. После прогрева анода на воздухе в качестве рабочего газа, можно постепенно переключать воздух на водно-спиртовую или водно-ацетоновую смесь, если это у вас уже налажено.

    ОСТОРОЖНО! В момент запуска на горелке присутствует высокое напряжение. Руки должны быть изолированы от цепи анода и катода. Заземление на схеме показано условно. Заземляться может и цепь анода горелки. Тогда катод оказывается под высоким напряжением.

    Смотрите еще:

    Оборудование для плазменной сварки

    Плазменный сварочный аппарат

    Плазморез своими руками схемы чертежи

    Плазменная резка - это метод обработки металлических пустых частей плазменным потоком.

    Этот метод позволяет разрезать металл, так как его достаточно, чтобы он выполнялся таким образом, чтобы материал имел электропроводность.

    По сравнению с аналогичными методами плазменная резка металлов позволяет осуществлять более быстрый и качественный процесс без использования массивных роликов и специальных добавок.

    Таким образом, можно обрабатывать различные металлические металлические листы, трубы разных диаметров, фасонные и сортированные изделия.

    Во время обработки получается качественный срез, что требует минимальных усилий по очистке.

    Даже с помощью этой технологии можно устранить различные недостатки с металлической поверхности, такие как выпуклости, швы и неровности, и подготовиться к сварке, сверлению и другим операциям.

    Схема работы

    Плазменная резка листового металла является чрезвычайно эффективным методом.

    В отличие от других методов, он может использоваться для обработки черных и цветных металлов. По этой причине нет необходимости готовить поверхность и очищать ее от загрязняющих веществ, что может затруднить воспламенение дуги. В отрасли основным конкурентом этого метода является лазерная обработка, которая имеет еще большую точность, но также требует значительно более дорогих установок.

    В домашних условиях эквивалентными конкурентами плазменного устройства нет.

    Качество плазменной резки металлов

    Технология плазменной резки

    Плазменная резка осуществляется с использованием специального устройства, которое имеет размеры, аналогичные размерам обычного сварочного аппарата. Вначале эти устройства имели большие размеры, но во время улучшения они стали меньше.

    Устройство подключено к источнику питания 220 В для бытовых приборов и 380 В для промышленного применения.
    В процессе производства резка осуществляется с помощью станков с ЧПУ, которые представляют собой одну или несколько горелок с механизмами их перемещения.

    Машина может реализовать меры по конкретной программе, что значительно облегчает работу в одном и том же разрезе нескольких листов.

    Для создания плазменной струи необходимо подключить систему к компрессору или воздушной линии.

    Обратите внимание

    Сжатый воздух, подаваемый на устройство, должен быть очищен от грязи, пыли и влаги. С этой целью перед устройством установлены воздушные фильтры и осушители. Без таких устройств износ электродов и других элементов будет ускоряться быстрее. Плазменные горелки с жидкостным охлаждением также нуждаются в сантехнике.

    Ручная резка стальной трубы

    Круговая резка стальной трубы
    самоходная машина

    Технология воздушной плазменной резки позволяет достичь качественных кромок (без сосания и решетки) и отсутствия деформации (также на листовых листах с низким толстым слоем).

    Это позволяет проводить последующую сварку очищенного металла без предварительной обработки.

    Ручная резка металлов на образце

    Сущность плазменного листа

    Плазменная резка стали в повседневной жизни осуществляется устройствами, вдоль которых длина труб достигает 12 м.

    Ручные устройства имеют режущую головку, оборудованную ручкой с электроприводом. В таких устройствах используется воздушное охлаждение, поскольку оно проще в конструкции и не требует дополнительных холодильных установок. Водяное охлаждение используется в промышленных установках, где плазменная резка стального листа осуществляется более эффективно, но цена устройств выше.

    Кислородно-плазменная технология

    Для резки кислородной плазмой требуется специальный электрод и сопло, которое имеет значительный температурный эффект в качестве расходного материала.

    Во-первых, начинается вспомогательная дуга, которая возбуждается разрядом, вызванным генератором постоянного тока. Благодаря дуге создается плазменная горелка длиной 20-40 мм.

    Когда факел касается металла, появляется рабочая дуга, и вспомогательный лук выключается.

    Таким образом, плазма действует как направляющая между устройством и заготовкой. Arisen arc является самодостаточным, создавая плазму из-за ионизации молекул воздуха.

    Плазменная резка с использованием рабочей жидкости при температуре до 25000 ° С.

    Плазменная резка труб большого диаметра и других резервуаров

    Плазменная резка и сварка могут выполняться в мастерских и мастерских, а также на открытом воздухе.

    Возможно, этот метод нельзя назвать эффективным, как газовая электростанция, для ремонта и строительных работ, при отсутствии центральной системы для электричества и сжатого воздуха. В этом случае для обеспечения мощности устройства и компрессора необходим достаточно сильный генератор.

    Подобно разрезанию газового пламени, этот метод можно использовать для обработки пустых частей разных размеров и форм.

    Плазменная резка труб большого диаметра не создает никаких проблем: она выполняется вручную или с помощью самоходных машин. Фиксированная горелка вращается снаружи трубки. Использование самоходных машин обеспечивает точную и ровную резку. Работа с формованными и сортированными прокатными изделиями также может быть автоматизирована в промышленных условиях.

    Преимущества использования устройств SIBERIAN:

    • Универсальность (возможность нанесения на любой металл, включая цветные и тугоплавкие металлы);
    • Скорость резания;
    • Высокое качество поверхности после резки;
    • Экономика (с использованием сжатого воздуха);
    • Почти полное отсутствие термических деформаций на подлежащем сокращению продукте;
    • Мобильность, а не тяжелый вес агрегатов с воздушным охлаждением;
    • Прост в использовании.

    Устройства для поджига дуги

    Устройства для первоначального поджига дуги делятся на два класса: поджиг дуги от короткого замыкания и путем пробоя промежутка электрод-изделие высоковольтными импульсами.

    Поджиг коротким замыканием осуществляется путем кратковременного контакта электрода и изделия и последующего их разведения. Ток, через микровыступы электрода, разогревает их до температуры кипения, а поле, возникающее при разведении электродов, обеспечивает эмиссию электронов, достаточную для возбуждения дуги.

    При таком поджиге возможен перенос материала электрода в сварной шов. Для устранения этого нежелательного явления зажигание должно осуществляться при малом токе, не превышающем 5-20А. Устройство для поджига должно обеспечивать малый ток короткого замыкания, поддержание тока на этом уровне до момента образования дуги и лишь затем плавное нарастание до рабочего.

    (УДГ-201, АДГ-201, АДГ-301).

    Основные требования к устройствам для поджига через зазор (возбудителям дуги или осцилляторам):

    1) должен обеспечить надежное возбуждение дуги;

    2) не должен угрожать безопасности сварщика и оборудования.

    Возбудители могут быть предназначены для возбуждения дуги постоянного или переменного тока. В последнем случае к возбудителям предъявляется ряд специфических требований, относящихся к моменту поджига дуги. Схема осциллятора ОСПЗ – 2М показана на рис.

    Рис. 5.5. Принципиальная электрическая схема осциллятора ОСПЗ-2М. F1 – предохранитель; ПЗФ – фильтр защиты от помех; TV1 – трансформатор повышающий; FV – разрядник; Cг – конденсатор колебательного контура; Cn – разделительный конденсатор; TV2 – высоковольтный трансформатор; F2 – предохранитель.

    Конденсатор Сг заряжается от напряжения вторичной обмотки повышающего трансформатора TV1.

    После зарядки его до напряжения пробоя разрядника FV образуется колебательный контур, состоящий из конденсатора Сг и первичной обмотки высоковольтного трансформатора TV2.

    Частота колебаний этого контура примерно равна 500 – 1000 кГц.

    Со вторичной обмотки это напряжение частотой 500 – 1000 кГц и величиной порядка 10000 В через разделительный конденсатор Cn и предохранитель F2 подается на промежуток электрод – изделие.

    При этом в данном промежутке возникает искра, которая ионизирует промежуток, вследствие чего от источника питания возбуждается электрическая дуга. После возбуждения дуги осциллятор автоматически отключается.

    Необходимо обратить внимание, что у осциллятора высокое напряжение.

    Для человека оно не опасно вследствие маломощности источника. Однако если в схеме источника имеются полупроводники (диоды, тиристоры и др.), то возможен их пробой напряжением осциллятора.

    Для исключения этого осциллятор необходимо подключать к источнику с использованием систем защиты (рис. 5.6).

    Как сделать плазморез своими руками из инвертора?

    Схема подключения осциллятора к источнику питания.

    Дроссель зашиты ДЗ для высокой частоты осциллятора имеет очень большое индуктивное сопротивление и не пропускает напряжение осциллятора к источнику.

    Защитный конденсатор СЗ, наоборот, имеет очень малое сопротивление для высокой частоты, защищая источник от высокочастотного и высоковольтного напряжения осциллятора. Разделительный конденсатор Ср защищает осциллятор от напряжения источника питания.

    Как самостоятельно сделать плазморез из инвертора

    В отличие от сварочного трансформатора, инвертор отличается компактностью, малым весом и высоким КПД, что объясняет его популярность в домашних мастерских, небольших гаражах и цехах.

    Он позволяет закрывать большинство потребностей в сварочных работах, но для качественной резки требуется лазерный аппарат или плазморез.

    Универсальный аппарат для сварки

    Лазерное оборудование очень дорогое, плазморез тоже стоит недешево. Плазменная резка и сварка металла небольшой толщины имеет прекрасные характеристики, недостижимые при использовании электросварки. При этом силовой блок у плазмореза и сварочного аппарата для электродуговой сварки во многом имеют одинаковые характеристики.

    Возникает желание сэкономить, и при небольшой доработке использовать его и для плазменной резки. Оказалось, что это возможно, и можно встретить много способов переделки сварочных аппаратов, в том числе инверторных, в плазморезы.

    Аппарат плазменной резки представляет собой тот же сварочный инвертор с осциллятором и плазмотроном, кабелем массы с зажимом и внешним или внутренним компрессором. Часто компрессор используется внешний и в комплект поставки не входит.

    Если у владельца сварочного инвертора имеется еще и компрессор, то можно получить самодельный плазморез, приобретя плазмотрон и сделав осциллятор. В итоге получится универсальный сварочный аппарат.

    Принцип работы горелки

    Работа аппарата плазменной сварки и резки (плазмореза) основана на использовании в качестве режущего или сваривающего инструмента плазмы, четвертого состояния вещества.

    Для ее получения требуется высокая температура и газ под высоким давлением. При создании между анодом и катодом горелки электрической дуги в ней поддерживается температура в несколько тысяч градусов.

    Образование плазмы

    Если пропустить при таких условиях через дугу струю газа, то он ионизируется, расширится в объеме в несколько сотен раз и нагреется до температуры в 20-30 тысяч °C, превращаясь в плазму. Высокая температура почти мгновенно расплавляет любой металл.

    В отличие от кумулятивного снаряда процесс образования плазмы в плазмотроне регулируемый.

    Анод и катод в резаке плазмореза находятся на расстоянии нескольких миллиметров друг от друга. Осциллятор вырабатывает импульсный ток большой величины и частоты, пропускает его между анодом и катодом, что приводит к возникновению электрической дуги.

    После этого через дугу пропускается газ, который ионизируется. Так как все происходит в замкнутой камере с одним выходным отверстием, то получившаяся плазма с огромной скоростью вырывается наружу.

    На выходе горелки плазмореза она достигает температуры 30000 ° и плавит любой металл. Перед началом работ к заготовке с помощью мощного зажима подсоединяется провод массы.

    Когда плазма достигает заготовки, то электрический ток начинает течь через кабель массы и плазма достигает максимальной мощности. Ток доходит до 200-250 А. Цепь анод – катод разрывается с помощью реле.

    Резка

    При пропадании основной дуги плазмореза, эта цепь опять включается, не давая исчезнуть плазме. Плазма играет роль электрода в электродуговой сварке, она проводит ток, а благодаря своим свойствам создает в области соприкосновения с металлом область с высокой температурой.

    Площадь соприкосновения струи плазмы и металла маленькая, температура высокая, нагрев происходит очень быстро, поэтому практически отсутствуют напряжения и деформации заготовки.

    Обратите внимание

    Срез получается ровный, тонкий не требующий последующей обработки. Под напором сжатого воздуха, который используется в качестве рабочего тела плазмы, жидкий металл выдувается и получается рез высокого качества.

    При использовании инертных газов с помощью плазмореза можно проводить качественную сварку без вредного воздействия водорода.

    Плазмотрон своими руками

    При изготовлении плазмореза из сварочного инвертора своими руками самой сложной частью работ является производство качественной режущей головки (плазмотрона).

    Инструменты и материалы

    Если делать плазменный резак своими руками, то легче использовать в качестве рабочего тела воздух. Для изготовления понадобятся:

    • рукоятка, в которой должны поместиться кабель и трубка для подачи воздуха;
    • пусковая кнопка горелки плазмореза;
    • изолирующая втулка;
    • электрод горелки плазмореза;
    • устройство завихрения воздушного потока;
    • набор сопел различного диаметра для резки металлов различного вида и толщины;
    • защитный наконечник от брызг жидкого металла;
    • ограничительная пружина для поддержания одинакового зазора между соплом горелки плазмореза и разрезаемым металлом;
    • насадки для снятия фасок.

    Расходные материалы плазмореза в виде сопел, электрода стоит купить в магазине сварочного оборудования. Они в процессе резки и сварки выгорают, поэтому имеет смысл приобретать по несколько штук на каждый диаметр сопла.

    Чем тоньше металл для резки, тем меньше должно быть отверстие сопла горелки плазмореза. Чем толще металл, тем больше отверстие сопла. Наиболее часто используется сопло с диаметром 3 мм, оно перекрывает большой диапазон толщин и видов металлов.

    Сборка

    Сопла горелки плазмореза прикрепляются прижимной гайкой. Непосредственно за ним располагается электрод и изолирующая втулка, которая не позволяет возникнуть дуге в ненужном месте устройства.

    Затем расположен завихритель потока, который направляет его в нужную точку. Вся конструкция помещается во фторопластовый и металлический корпус. К выходу трубки на ручке горелки плазмореза приваривается патрубок для подсоединения воздушного шланга.

    Электроды и кабель

    Для плазмотрона требуется специальный электрод из тугоплавкого материала. Обычно их изготавливают из тория, бериллия, гафния и циркония. Их применяют из-за образования при нагреве тугоплавких окислов на поверхности электрода, что увеличивает длительность его работы.

    При использовании в домашних условиях предпочтительней применение электродов из гафния и циркония. При резке металла они не вырабатывают токсичных веществ в отличие от тория и бериллия.

    Кабель от инвертора и шланг от компрессора к горелке плазмореза нужно прокладывать в одной гофрированной трубе или шланге, что обеспечит охлаждение кабеля в случае его нагрева и удобство в работе.

    Сечение медного провода нужно выбрать не менее 5-6 мм2. Зажим на конце провода должен обеспечивать надежный контакт с металлической деталью, в противном случае дуга с дежурной не перекинется на основную дугу.

    Компрессор на выходе должен иметь редуктор для получения нормированного давления на плазмотроне.

    Варианты прямого и косвенного действия

    Конструкция горелки плазмореза довольно сложная, выполнить в домашних условиях даже при наличии различных станков и инструментов сложно без высокой квалификации работника. Поэтому изготовление деталей плазмотрона нужно поручить специалистам , а еще лучше приобрести в магазине. Выше была описана горелка плазмотрона прямого действия, она может резать только металлы.

    Существуют плазморезы с головками косвенного действия. Они способны резать и неметаллические материалы. В них роль анода выполняет сопло, и электрическая дуга находится внутри горелки плазмореза, наружу под давлением выходит только плазменная струя.

    При простоте конструкции устройство требует очень точных настроек, в самодеятельном изготовлении практически не применяется.

    Доработка инвертора

    Для использования инверторного источника питания для плазмореза его нужно доработать. К нему нужно подключить осциллятор с блоком управления, который будет выполнять функцию пускателя, поджигающего дугу.

    Схем осцилляторов встречается довольно много, но принцип действия один. При запуске осциллятора между анодом и катодом проходят высоковольтные импульсы, которые ионизируют воздух между контактами. Это приводит к снижению сопротивления и вызывает возникновение электрической дуги.

    Затем включается газовый электроклапан и под давлением воздух начинает проходить между анодом и катодом через электрическую дугу. Превращаясь в плазму и достигая металлической заготовки, струя замыкает цепь через нее и кабель массы.

    Основной ток величиной примерно 200 А начинает течь по новой электрической цепи. Это вызывает срабатывание датчика тока, что приводит к отключению осциллятора. Функциональная схема осциллятора изображена на рисунке.

    Функциональная схема осциллятора

    В случае отсутствия опыта работы с электрическими схемами можно воспользоваться осциллятором заводского производства типа ВСД-02. В зависимости от инструкции по подключению они присоединяются последовательно или параллельно в схему питания плазмотрона.

    Перед изготовлением плазмореза, необходимо определить предварительно с какими металлами, и какой толщины хотите работать. Для работы с черным металлом достаточно компрессора.

    Для резки цветных металлов потребуется азот, высоколегированной стали нужен аргон. В связи с этим, возможно, потребуется тележка для перевозки газовых баллонов и понижающие редукторы.

    Медленное движение приводит к образованию широкого реза с неровными краями. Быстрое перемещение приведет к тому, что металл прорезается не во всех местах. При должной сноровке можно получить качественный и ровный срез.

    Изготовление самодельного плазмореза из сварочного инвертора

    Технология плазменной резки листового металла и различных металлических изделий с одинаковым успехом применяется в быту и на крупных промышленных производствах.

    С помощью специального оборудования можно с легкостью разрезать цветные металлы, а также качественно работать с нержавеющей сталью, алюминием и другими сплавами.

    Разрезание цветных металлов осуществляется при помощи специальных плазморезов, которые одновременно просты в использовании, функциональны и надёжны. Расскажем поподробнее об этом оборудовании и поговорим о том, как изготовить плазменный резак своими руками из инвертора.

    Промышленные плазменные резаки - это производительное оборудование, которое позволяет осуществлять максимально точный раскрой различных по показателям тугоплавкости металлов. Такие промышленные плазморезы предназначены в первую очередь для эксплуатации в условиях повышенных нагрузок и оснащаются ЧПУ, что обеспечивает возможность изготовления деталей серийным способом.

    Описание самодельного плазмореза

    Если вам необходим плазморез для бытового использования, а также для применения такого оборудования в строительстве, то такой резак можно изготовить своими руками из простейшего сварочного инвертора . В последующем выполненное своими руками оборудование будет отличаться универсальностью в использовании, позволит эффективно разрезать цветные металлы и толстую листовую сталь.

    Выполнить такой резак своими руками из инвертора не составит какой-либо особой сложности.

    Схемы выполнения подобных устройств вы можете с легкостью найти в сети Интернет и по полученным расчетам выполнить такое простое в использовании устройство.

    Самодельные аппараты для плазменной резки не оснащаются ЧПУ, поэтому использовать такое оборудование для работы, которая полностью контролируется автоматикой, будет невозможно. Вы должны понимать, что с использованием таких самодельных плазморезов выполнить две идеально точные детали будет нельзя.

    Самодельный плазморез будет состоять из следующих элементов:

    • Плазмотрона.
    • Источника постоянного тока.
    • Компрессора или же баллона с газом.
    • Осциллятора.
    • Кабелей питания.
    • Шлангов подключения.

    Принцип работы

    Принцип работы такого оборудования чрезвычайно прост:

  • Используемый источник тока, а в нашем случае это инвертор, вырабатывает напряжение и по кабелям подаёт его в плазмотрон.
  • В плазмотроне находятся два электрода, между которыми и возбуждается высокотемпературная дуга.
  • По специально закрученным каналам под высоким давлением в рабочую область с зажженной дугой подается поток воздуха или газ.
  • К разрезаемому изделию предварительно подключается кабель массы, который замыкается на разрезаемую поверхность и обеспечивает возможность работы с металлом.
  • Источники постоянного тока

    Технология плазменной резки неизменно потребует высокой мощности рабочего тока, показатели которого должны находиться на уровне полупрофессиональных и профессиональных инверторных сварочных аппаратов.

    Использовать в качестве источника тока трансформаторные сварочные аппараты не рекомендуется, так как подобные устройства отличаются громоздкими габаритами и неудобны в работе.

    А вот инвертор станет отличным выбором, так как такие устройства сочетают компактные габариты и обеспечивают качественный электроток.

    Схемы и чертежи плазмореза своими руками отличаются простотой, при этом существенно сокращаются затраты на изготовление такого оборудования.

    Сделанный ручной компактный плазморез из сварочного инвертора сможет справиться с резкой металла, толщина листа которого будет достигать 30 мм.

    Если говорить о преимуществах таких домашних плазморезов, выполненных с использованием инвертора, то отметим следующее:

    • Отсутствие искр металла.
    • Гладкость кромок.
    • Точность линий.
    • Решены проблемы с перегревом.

    Используемый источник тока должен соответствовать следующим требованиям:

    • Питание от сети с напряжением 220 Вольт.
    • Возможность работать с мощностью в 4 кВт.
    • Показатель холостого хода должен составлять 220 Вольт.
    • Диапазон регулировки силы тока находится в диапазоне 20−40 Ампер.

    Конструкция плазмотрона

    Плазмотрон является вторым по важности элементом резака для металла. Рассмотрим поподробнее конструкцию плазмотрона и принцип его работы. Состоит он из основного и вспомогательного электрода. Основной электрод выполняется из тугоплавких металлов, а вспомогательный, который имеет форму сопла, обычно делается из меди.

    В плазмотроне катодом является основной электрод из тугоплавкого металла, а медный электрод-сопло используется в качестве анода, что и позволяет обеспечить качественный электроток и высокотемпературную дугу для разрезания металла.

    Выполненный плазмотрон отвечает за создание и поддержание дуги, которая располагается между обрабатываемой деталью и резаком. От формы и конструкции сопла будет зависеть толщина реза, а также температура, которая создается таким резаком. Используемое сопло может выполняться с полусферической или конической формой, обеспечивая рабочую температуру на уровне 30 000 градусов по Цельсию.

    Обратите внимание

    К плазмотрону подается рабочий газ из баллона, при этом используются специальные сверхпрочные газовые шланги, способные выдерживать повышенное давление. В каждом конкретном случае в зависимости от материала, с которым проводится работа, используемый газ, который необходим для разрезания металла, может отличаться.

    Рабочий газ подается по специальным каналам, причём наличие у трубки подачи многочисленных витков позволяет обеспечить нужные завихрения воздуха, что, в свою очередь, гарантирует качественную разрезающую плазменную дугу, которая будет иметь правильную форму. Тем самым улучшается качество резки и сварки металла и минимизируется толщина шва.

    Осциллятор

    Особенностью плазморезов является тот факт, что для начала работы необходим предварительный поджиг дуги , лишь после этого в плазмотрон подается газ, создаётся необходимой температуры дуга и осуществляется разрезание металла. В качестве такого своеобразного стартера используется осциллятор, который и служит для предварительного поджига дуги. Схема выполнения осциллятора не представляет сложности.

    В Интернете вы сможете найти функциональные и электрические схемы осцилляторов, выполнить которые не составит труда. Необходимо лишь использовать качественные электросхемы и конденсаторы, которые будут по своим параметрам подходить к генерируемому инвертором электротоку. В зависимости от своего типа такая горелка может включаться в схему питания плазмотрона последовательно или параллельно.

    Рабочий газ

    Ещё перед тем как выбирать конкретную схему изготовления плазменного резака, следует определиться со сферой использования такого оборудования.

    В том случае, если вы планируете использовать аппарат исключительно для работы с черными металлами, можно исключить из схемы баллоны с газом, а использовать один лишь компрессор со сжатым воздухом.

    Если же планируется применять такое оборудование для латуни, титана и меди, то необходимо выбирать схему плазменного резака с баллоном с азотом. Резка алюминия выполняется при помощи специальной смеси газа с водородом и азотом.

    Особенности использования плазмореза

    Разберемся с тем, как осуществляется плазменная резка металла своими руками. После включения инвертора сгенерированный электрический ток поступает в плазменный резак на электрод, осциллятор поджигает электрическую дугу. Ее температура изначально может составлять 6−8 тысяч градусов.

    Сразу же после поджигания дуги в сопло под высоким давлением подается воздух или газ, через который проходит электрический заряд.

    Воздушный поток нагревается и ионизируется электрической дугой, после чего его объём может увеличиваться в сотни раз, а сам газ и воздух начинает проводить электрический ток.

    Плазморезка формирует тонкую струю плазмы, температура которой может достигать 30 000 градусов. В последующем такая высокотемпературная струя плазмы подаётся на обрабатываемый металл, что позволяет осуществлять разрезание сверхпрочных металлических элементов.

    Одной из особенностей использования плазменной резки является тот факт, что обрабатываемый металл режется и плавится исключительно в месте воздействия на него плазменного потока.

    Крайне важно правильно позиционировать пятно воздействия плазмы, которое должно находиться строго в центре рабочего электрода.

    В том случае, если пренебрегать этим требованием, нарушается воздушно-плазменный поток, что ухудшает качество разрезания металла.

    Качество работы с таким плазменным резаком будет также зависеть от скорости подачи воздушного потока.

    Это позволит с легкостью работать с различными по своим характеристикам тугоплавкости металлам, обеспечивая качественное разрезание без термического воздействия на структуру сплава.

    Плазморез представляет собой специальное устройство, которое позволяет быстро, качественно и эффективно разрезать различный по своей структуре металл.

    Можно как приобрести уже изготовленные в заводских условиях плазморезы, так и выполнить их самостоятельно.

    Вы с легкостью сможете найти подходящие для вас схемы выполнения плазменных резаков из инвертора или трансформаторного сварочного аппарата, что и позволит самостоятельно выполнить такое оборудование, сэкономив на его покупке в магазине.

    На промышленных предприятиях, небольших мастерских, при проведении строительных и ремонтных работ используются ручной плазморез, когда необходимо сделать сварку или резку изделий из металла, а также специальное оборудование оснащенное системами ЧПУ. Для выполнения небольших по объему работ, может использоваться плазморез собранный своими руками из инвертора, который способен обеспечить высокое качество реза или шва с учетом выполняемых операций.

    Принцип действия плазмореза

    При включении источника питания ток начинает поступать в рабочую зону во внутреннюю камеру плазмореза, где активируется электрическая дежурная дуга между наконечником сопла и электродом. Образующая дуга заполняет канал сопла, куда под большим давлением начинает подаваться воздушная смесь, которая за счет высокой температуры 6000-8000 °C сильно нагревается и увеличивается в объеме от 50 до 100 раз. За счет внутренней формы сужающегося сопла, которое имеет форму конуса поток воздуха, сжимается, разогреваясь до температуры на выходе равной 25000 — 30000 °C, с образованием плазменной струи производящей резку обрабатываемой болванки. Причем первоначально активированная дежурная дуга гаснет и активируется рабочая между электродом и изделием из металла. Образующиеся продукты от воздействия плазменного горения и плавки металла удаляются за счет силы струи.

    Рис 1 Проведение операций по разделке металла, где необходим раскрой или сварка изделия, используя ручной самодельный изготовленный своими руками или профессиональный плазморез.

    Оптимальными показателями для рабочего процесса являются:

    1. подача газа со скоростью до 800 м/сек;
    2. показатель тока может составлять до 250 — 400 А.

    Схема 1. Чертеж процесса плазменной разделки обрабатываемого изделия.

    Ручной плазморез собранный с использованием инвертора в основном применяется для обработки заготовок и отличается небольшим весом и экономным расходом электроэнергии.

    Подбор составных частей плазмореза

    Для сборки плазменного резака, используя чертежи (на базе инвертора), своими руками необходимы агрегаты:

    1. устройство подачи газа под давлением – компрессор;
    2. плазменный резак;
    3. электротехническое устройство – инвертор, обеспечивающий силу тока для образования электрической дуги;
    4. рабочие шланги высокого давления для подачи воздуха и защищенный электрический кабель.

    Для подачи воздуха подбираем компрессор с учетом выходного объема в течение 1 мин. Производственные компании выпускают 2 вида компрессоров:

    1. аппарат поршневой;
    2. аппарат винтовой (который обладает меньшим расходом электроэнергии, легче, но 40-50% дороже).

    Рис. 2 Плазморез (аппарат) с комплектом кабеля для резака и соединения с заготовкой (в качестве анода).

    Поршневые компрессоры подразделяются на масляные и без применения масла, по принципу привода — с ременным или прямым соединением элементов.
    При эксплуатации компрессоров необходимо соблюдать ряд правил:

    1. при отрицательной температуре окружающей среды необходимо предварительно прогревать масло, содержащееся в картере;
    2. необходимо регулярно менять воздушный (входной) фильтр;
    3. строго контролировать уровень масла в картере;
    4. не реже 1 раз полгода необходимо осуществлять полную очистку агрегатов от посторонних примесей;
    5. по окончании работ необходимо сделать сброс давления (с помощью регулятора) в системе.

    При ремонтных работах часто используется продукция компании ORLIK KOMRESSOR (Чехия). Аппарат ORL 11 позволяет производить резку заготовки с использованием силы тока 200-440 А и воздушно-газового потока поступающего под давлением.

    В комплект оборудования входит:

    1. компрессор;
    2. блок фильтров магистральных для воздушно-газовой смеси;
    3. осушители газа;
    4. ресивер.

    На выходе из агрегата поступает очищенный воздух от масла, пыли и влаги. Примером винтовых компрессоров является продукция фирмы Atlas Copco (Швеция) серии СА. Устройство оснащено для очищения воздуха автоматической системой удаления конденсата.

    Плазматрон — специальный аппарат, в котором с помощью электрического тока образуется электродуга разогревающая в камере подаваемый под давлением воздух с образованием режущего потока плазмы.

    Резак состоит из элементов:

    1. специального держателя с электродом;
    2. изолирующей прокладки разделяющей сопло и электродный узел;
    3. камеры образования плазмы;
    4. сопла выходного для образования плазменной струи (см. чертежи);
    5. снабжающих систем;
    6. элементов тангенциальной подачи плазмы (на некоторых моделях) для стабилизации дугового разряда.

    По способу выполнения работ (сварка или резка) резаки подразделяются:

    1. Двухпоточные, используемые в восстановительных, окислительных и инертных средах.
    2. Газовые инертные (с использованием гелия, аргона), восстановительные (водорода, азота).
    3. Газовые окислительные (в состав воздушно-газовой смеси входит кислород).
    4. Газовые с применением стабилизационной (газожидкостной) дуги.

    Катод плазматрона изготавливается в виде стержня или вставок из вольфрама, гафния, циркония. Широкое распространение получили плазматроны с гильзовым катодом, применяемым при резке с использованием воздушно-газовой потока под давлением.

    Для проведения резки изделий в окислительной среде используется пустотный катод, изготовленный из меди с принудительной системой охлаждения с помощью воды.

    Рис. 3 Переносной аппарат (инвертор) для осуществления плазменной резки.

    Плазморез двухпоточный (инверторный) оснащаются 2-мя соосными соплами наружным и внутренним. Поступающий газ во внутреннее сопло считается первичным, а наружное – дополнительным, причем газы могут иметь различный состав и объем.

    Плазморез со стабилизацией дуги за счет подачи газожидкостного потока имеет отличие, которое заключается в подаче воды в факельную камеру для стабилизации состояния дугового разряда.

    Для активации рабочей дуги в качестве анода используется заготовка, которая с помощью зажимов и кабеля подсоединяется к инвертору.

    В качестве энергетической установки для осуществления процесса плазменной резки используется устройство (инвертор), обеспечивающее необходимую силу тока, которое обладает более высоким КПД, чем трансформатор, но возможности по обработке металла у трансформатора значительно выше.

    Схема 2. Чертеж источника питания плазматрона своими руками.

    Преимущества инвертора:

    1. возможность равномерно изменять параметры;
    2. небольшой вес;
    3. устойчивое состояние рабочей дуги;
    4. высокое качество реза или сварки.

    В комплект оборудования также входит набор шлангов высокого давления для подсоединения стационарного компрессора и соединительный электрический кабель.

    Для сборки плазмореза своими руками разрабатывается схема устройства с указанием необходимых агрегатов отвечающих требуемым характеристикам, которая должна включать все дополнения и изменения, используемые при сборке с приведением необходимых расчетов наиболее важных показателей. Самодельный плазморез своими руками можно собрать, используя готовые блоки и агрегаты, производимые специализированными компаниями при этом необходимо сделать точные расчеты и согласование выходных параметров протекающих процессов.

    Особенности маркировки плазморезов

    Выпускаемые промышленными предприятиями плазморезы можно разделить на 2 категории:

    1. агрегаты машинной резки;
    2. ручные.

    Ручные резаки более доступны по цене при необходимости сборки своими руками. Производимые модели имеют специальную маркировку:

    1. ММА – аппарат предназначен для дуговой сварки с помощью индивидуального электрода;
    2. CUT – аппарат (плазморез) используется для разделки металла;
    3. TIQ — аппарат применяется для работ, где необходима аргонная сварка.

    Производственные предприятия выпускают оборудование для резки металла:

    1. Профи CUT 40 (горелка РТ-31, допустимая толщина реза – 16 мм, расход воздушно-газовой смеси– 140 л/мин, ресивер объемом 50 л);
    2. Профи CUT 60 (горелка Р-80, допустимая толщина реза заготовки — 20 мм, расход воздушно-газовой смеси – 170 л/мин.);
    3. Профи CUT 80 (горелка Р. – 80, допустимая толщина реза заготовки – 30 мм, расход воздушно-газовой смеси – 190 л/мин.);
    4. Профи CUT 100 (горелка А-101, допустимая толщина реза заготовки – 40 мм, расход воздушно-газовой смеси — 200 л/мин.), ресивер объемом 100 л.

    Изготовление плазмореза с ЧПУ своими руками

    Плазморез оснащенный ЧПУ должен иметь унифицированную сборку, используя чертежи, выполненные на основе подготовленного технического задания изделия, куда входят:

    1. стол рабочий;
    2. передача ременная;
    3. блок управления функциями;
    4. элементы шаговые;
    5. направляющие линейные;
    6. система регулировки высоты реза;
    7. блок управления ЧПУ;

    Схема 3. Чертеж устройства инвертора для плазменной резки.

    Чертежи всех блоков плазмореза можно приобрести с учетом требуемой мощности и характеристик установки и финансовых возможностей или сделать своими руками при наличии опыта и знаний.

    Для комплектования и сборки станка с ЧПУ необходимо, используя чертежи, изготовить ряд элементов:

    1. основание для сварки стола;
    2. собирается прочная рама с последующей окраской;
    3. крепятся опорные стойки;
    4. собирается водяной стол;
    5. устанавливаются крепления и сами рейки;
    6. монтируются направляющие линейные;
    7. монтируется облицовка стола;
    8. устанавливаются направляющие совместно с порталом;
    9. портал оснащается двигателем и сигнальными датчиками;
    10. монтируются направляющие, двигатель направляющей Y и зубчатая рейка регулирования позиционирования;
    11. монтируется направляющая с оснащением двигателем;
    12. монтируется сигнальный датчик поверхности металла;
    13. монтируется кран для удаления воды со стола;
    14. прокладываются соединительные кабели-каналы X.Z.Y;
    15. провода изолируются и закрываются с помощью облицовки;
    16. монтируется рабочий резак;
    17. собирается и монтируется устройство с ЧПУ.

    Проведение операций по изготовлению и сборке плазмотрона с ЧПУ, должны выполняться только при наличии квалифицированных специалистов. Схема устройства (чертежи) должна включать все необходимые элементы, обеспечивающие высокое качество работы и безопасность выполнения резки металла. Оснащение предприятий оборудованием с ЧПУ позволяет повысить производительность труда и сложность выполнения операций. Сделать производственные процессы, выполняемые с помощью оборудования с ЧПУ более экономичными за счет повышения производительности труда и сокращения скорости обработки изделий.

    Вам также могут быть интересны статьи:

    Как сделать строгальный станок по дереву своими руками Как сделать гильотину для резки металла своими руками?

    Резка листового металла плазмой обычно применяется на крупных производствах для изготовления сложных по конфигурации деталей. Резать на промышленных станках можно любые металлы - сталь обычную и нержавеющую, алюминий, медь, латунь, сверхтвердые сплавы. Плазморез своими руками сделать тоже можно, причем вполне работоспособную конструкцию, правда с несколько ограниченными возможностями.

    Для крупносерийного производства она будет непригодна, но вырезать несколько деталей в слесарной мастерской, металлообрабатывающем цехе или в домашних условиях, в гараже, например, всегда получится. При этом по сложности конфигурации и твердости обрабатываемого металла ограничений практически нет. Ограничения касаются толщины металла, размеров листа и скорости резания.

    Проще всего построить плазменный аппарат для резки на базе инверторного сварочного аппарата. Плазморез своими руками из инвертора отличается относительно простой конструкцией, работоспособностью, доступностью основных узлов и деталей. Которые нет возможности купить, можно сделать самостоятельно в условиях мастерской средней оснащенности оборудованием.

    Самодельный аппарат плазменной резки не оборудуется ЧПУ - в этом его недостаток и преимущество. Недостаток состоит в том, что сложно изготовить две абсолютно точные детали при управлении вручную. Даже мелкие серии заготовок будут в чем-то отличаться.

    Преимущество же состоит в том, что один из самых дорогостоящих узлов не придется покупать. Сделать его под силу не каждому инженеру высшей квалификации, а собирать из готовых узлов - то же, что покупать новое устройство. Для мобильного резака ЧПУ не нужно, в силу других задач, которые он выполняет.

    Главными составными частями самодельного плазмореза являются:

    • источник постоянного тока;
    • плазмотрон;
    • осциллятор
    • компрессор или баллон со сжатым газом;
    • шланги подключения;
    • кабеля питания.

    Как видно, ничего особо сложного в состав аппарата не входит. Но сложности начинаются при ближайшем рассмотрении характеристик того или иного узла.

    Источник тока

    Особенности плазменной резки требуют, чтобы сила тока находилась по меньшей мере на уровне сварочного аппарата средней мощности. Такой ток вырабатывается обычным сварочным трансформатором и инверторным аппаратом. В первом случае установка получится условно мобильной - большой вес и габариты трансформатора затруднит ее перемещение. В сочетании с баллоном для сжатого газа или компрессором система получится довольно громоздкой.

    Кроме того, трансформаторы отличаются невысоким КПД, что приведет к повышенному расходу электроэнергии при резке металла. Схема с использованием инвертора несколько проще и удобнее в эксплуатации, как и выгоднее по затратам энергии. Из сварочного инвертора получится довольно компактный плазморез, который без труда справиться с резкой металла толщиной до 25-30 мм. Именно для таких толщин применяются и промышленные установки. на трансформаторе сможет обрабатывать более толстые заготовки, но это требуется реже. Все преимущества плазменной резки проявляются именно на тонких и сверхтонких листах. Это:

    • точность линии;
    • гладкость кромок;
    • отсутствие брызг металла;
    • нет перегретых зон вблизи места взаимодействия дуги и металла.

    Самодельный плазморез собирается на базе любого инверторного аппарата для сварки. Количество режимов работы не имеет значения - нужен только постоянный ток силой более 30А.

    Плазмотрон

    Второй по важности элемент плазмореза. Рассмотрим коротко принцип его работы. Плазменный резак состоит из двух электродов, один из которых, основной, сделан из тугоплавкого металла, вторым является сопло. Обычно его делают из меди. Катодом служит основной электрод, анодом сопло, а при работе - обрабатываемая токопроводящая деталь.

    В данном случае мы рассматриваем плазмотрон прямого действия для резки металлов. Дуга возникает между резаком и обрабатываемой деталью. Существуют еще плазмотроны косвенного действия, которые режут плазменной струей, но о них будет сказано ниже. Плазморез из инвертора рассчитан на прямое действие.

    Кроме электрода и сопла, которые являются расходными материалами и могут заменяться по мере износа, в корпусе плазмотрона есть изолятор, разделяющий катодный и анодный узлы и небольшая камера, в которой подаваемый газ завихрятся. В сопле конической или полусферической сделано тонкое отверстие, сквозь которое вырывается раскаленный до температуры 5000-3000 0 С газ.

    Подается в камеру газ из баллона или от компрессора по шлангу, совмещенному с кабелями питания, которые образуют шлангово-кабельный пакет. Они соединены в одном изоляционном рукаве, или соединены в виде жгута. Газ поступает в камеру через прямой патрубок, расположенный сверху или сбоку вихревой камеры, которая нужна, чтобы рабочая среда перемещалась только в одну сторону.

    Как работает плазмотрон

    Газ, поступая под давлением в пространство между соплом (анодом) и электродом (катодом) спокойно проходит в рабочее отверстие и уходит в атмосферу. При включении осциллятора, устройства вырабатывающего импульсный высокочастотный ток, между электродами возникает дуга, которая называется предварительной и нагревает газ, находящийся в ограниченном пространстве камеры сгорания. Температура нагрева столь высока, что он переходит в другой вид физического состояния - плазму.

    Этот вид материального состояния отличается тем, что практически все атомы ионизированы, то есть электрически заряженные. Кроме того, давление в камере резко возрастает и газ вырывается наружу в виде раскаленной струи. При поднесении плазмотрона к детали, возникает вторая дуга, более мощная. Если сила тока от осциллятора равна 30-60 А, то рабочая дуга возникает при 180-200 А.

    Эта дуга дополнительно разогревает газ, которые разгоняется под действием электрических сил до чрезвычайно высокой скорости - до 1500 м/с. Комбинированное действие высокой температуры плазмы и скорости движения разрезает металл по очень тонкой линии. Толщина разреза зависит от свойств сопла.

    По-другому работает плазмотрон косвенного действия, в нем в качестве основного анода выступает сопло. Из резака вырывается не дуга, а поток плазмы - струя, которая и режет не токопроводящие вещества. Оборудование-самоделка с такими плазмотронами работает очень редко.

    Из–за сложности и тончайших настроек изготовить его практически невозможно самостоятельно, несмотря на простые чертежи, которые есть в интернете. Он работает под высокими давлениями и температурами и становится попросту опасным, если что-то сделать не так. Плазморез по чертежам своими руками можно собрать из готовых деталей, которые продаются в магазинах сварочного оборудования. Но, как и большинство машин и механизмов, сборка из комплектующих стоит дороже, чем готовый резак в сборе.

    Осциллятор

    Это своеобразный стартер, служащий для запуска предварительной дуги. Для разбирающихся в электронике схема его несложна. Функциональная схема выглядит так:

    А электрическая примерно так (один из вариантов):

    Как выглядит и работает самодельный осциллятор видно на видео. Если сборкой электросхем и поиском деталей нет времени заниматься, воспользуйтесь осцилляторами заводского изготовления, например ВСД-02. Его характеристики лучше всего подходят для работы с инвертором. Подсоединяется питания плазмотрона параллельно или последовательно, в зависимости от требований инструкции конкретного прибора.

    Рабочий газ

    Перед тем, как сделать плазморез, следует очертить предварительную сферу его применения. Если вы собираетесь работать только с черными металлами, то обойтись можно только компрессором. Для меди, титана и латуни потребуется азот, а происходит в смеси азота с водородом. Высоколегированные стали режутся в аргоновой атмосфере. В этом случае аппарат рассчитывается еще и под сжатый газ.

    Сборка устройства

    Ввиду достаточной сложности и многочисленности компонентов аппарата плазменной резки, его трудно разместить в переносном корпусе или ящике. Лучше всего использовать складскую тележку для перевозки товаров. На ней можно компактно расположить инвертор, баллоны или компрессор, кабельно-шланговую группу. В пределах цеха или мастерской перемещать их очень легко. Если потребуется выезд на другой объект, то все можно загрузить в прицеп легкового автомобиля.